Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

(Burk.) F. H. Chen (PN) is a traditional Chinese medicine that has been applied to prevent and treat osteoporosis. The mechanism of PN for osteoporosis remained a mystery.

Objective

The objective of this study was to reveal the therapeutic effect and illuminate the possible mechanism of PN for osteoporosis.

Methods

The Traditional Chinese Medicine Database and Analysis Platform was searched to screen the potent ingredients of the PN and to analyze the potential therapeutic targets for osteoporosis. We excavated four disease databases to collect osteoporosis-related genes. After integrating the gene expression profile of osteoporosis and the chemical-protein data of PN, a protein-protein interaction network was constructed to demonstrate the interactions among the gene products. GO function, KEGG pathway, and docking analyses were executed.

Results

Network pharmacology obtained 31 active ingredients and 134 targets for the treatment of osteoporosis. The key components were beta-elemene, quercetin, methyl palmitate, oleic acid, and hexanal. The results of GO and KEGG analyses showed that was beneficial for osteoporosis by influencing the main pathways including AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, p53 signaling pathway, NF-kappa B signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO signaling pathway, and Wnt signaling pathway, modulating inflammation, metabolism, cell proliferation, cell survival, growth and angiogenesis. intervened in osteoporosis through multi-components, multi-targets, and multi-pathways.

Conclusion

This study illustrates the mechanism of for osteoporosis, providing broader insights for novel research and developments of the Panax species for osteoporosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303335018241107084224
2025-01-09
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/15/EMIDDT-25-15-01.html?itemId=/content/journals/emiddt/10.2174/0118715303335018241107084224&mimeType=html&fmt=ahah

References

  1. MohamadN.V. Ima-NirwanaS. ChinK.Y. Are oxidative stress and inflammation mediators of bone loss due to estrogen deficiency? A review of current evidence.Endocr. Metab. Immune Disord. Drug Targets20202091478148710.2174/187153032066620060416061432496996
    [Google Scholar]
  2. CompstonJ.E. McClungM.R. LeslieW.D. Osteoporosis.Lancet20193931016936437610.1016/S0140‑6736(18)32112‑330696576
    [Google Scholar]
  3. TangY. ZhouD. GanF. YaoZ. ZengY. Exploring the mechanisms of sanguinarine in the treatment of osteoporosis by integrating network pharmacology analysis and deep learning technology.Curr Comput Aided Drug Des.2024211839310.2174/0115734099282231240214095025
    [Google Scholar]
  4. LiuC. XiongQ. LiQ. LinW. JiangS. ZhangD. WangY. DuanX. GongP. KangN. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling.Nat. Commun.2022131198910.1038/s41467‑022‑29633‑635418650
    [Google Scholar]
  5. SongS. GuoY. YangY. FuD. Advances in pathogenesis and therapeutic strategies for osteoporosis.Pharmacol. Ther.202223710816810.1016/j.pharmthera.2022.10816835283172
    [Google Scholar]
  6. LiH. XiaoZ. QuarlesL.D. LiW. Osteoporosis: Mechanism, molecular target and current status on drug development.Curr. Med. Chem.20212881489150710.2174/1875533XMTA1hNTIy232223730
    [Google Scholar]
  7. FengW. LuA. HuangD. JiangC. ChenB. WangX. Network pharmacology reveals the targets and mechanism for Panax notoginseng (Burk.) F. H. Chen against venous thromboembolism.Pharmacol. Res. Mod. Chin. Med.2022210003510.1016/j.prmcm.2021.100035
    [Google Scholar]
  8. WeiC. YueL. YouF. TaoC. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen-induced arthritis.Exp. Ther. Med.2021225130210.3892/etm.2021.1073734630657
    [Google Scholar]
  9. RenX. ZhuY. XieL. ZhangM. GaoL. HeH. Yunnan Baiyao diminishes lipopolysaccharide-induced inflammation in osteoclasts.J. Food Biochem.2020446e1318210.1111/jfbc.1318232189353
    [Google Scholar]
  10. LiQ. TianC. LiuX. LiD. LiuH. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis.Front. Pharmacol.202314120376710.3389/fphar.2023.120376737441527
    [Google Scholar]
  11. PatraS. MuthuramanM.S. MeenuM. PriyaP. PemaiahB. Anti-inflammatory effects of royal poinciana through inhibition of toll-like receptor 4 signaling pathway.Int. Immunopharmacol.20163419921110.1016/j.intimp.2016.02.02726971223
    [Google Scholar]
  12. FangY. KangY. ZouH. ChengX. XieT. ShiL. ZhangH. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway.Fitoterapia20181249210210.1016/j.fitote.2017.10.01529066299
    [Google Scholar]
  13. ChenJ.C. DuanW.L. BaiR.R. YaoH.Q. WuX.M. ShangJ. XuJ.Y. Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells.Chin. J. Nat. Med.201513861862710.1016/S1875‑5364(15)30058‑326253495
    [Google Scholar]
  14. LiuM. ChenX. MaJ. HassanW. WuH. LingJ. ShangJ. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress.Biomed. Pharmacother.2017951789179810.1016/j.biopha.2017.08.09228962084
    [Google Scholar]
  15. AhmadK.A. ZeH. ChenJ. KhanF.U. XuezhuoC. XuJ. QilongD. The protective effects of a novel synthetic β-elemene derivative on human umbilical vein endothelial cells against oxidative stress-induced injury: Involvement of antioxidation and PI3k/Akt/eNOS/NO signaling pathways.Biomed. Pharmacother.20181061734174110.1016/j.biopha.2018.07.10730119249
    [Google Scholar]
  16. LiuM. MaoL. DaoudA. HassanW. ZhouL. LinJ. LiuJ. ShangJ. β-elemene inhibits monocyte–endothelial cells interactions via reactive oxygen species/MAPK/NF-κB signaling pathway in vitro.Eur. J. Pharmacol.2015766374510.1016/j.ejphar.2015.09.03226415979
    [Google Scholar]
  17. LiY. SelvarajV. SaravananS. AbullaisS.S. WankhadeV. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models.Int. J. Biol. Macromol.2024274Pt 213349210.1016/j.ijbiomac.2024.13349238944072
    [Google Scholar]
  18. WangY. CheL. ChenX. HeZ. SongD. YuanY. LiuC. Repurpose dasatinib and quercetin: Targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration.Bioact. Mater.202325132810.1016/j.bioactmat.2023.01.00937056256
    [Google Scholar]
  19. VakiliS. ZalF. Mostafavi-pourZ. SavardashtakiA. KoohpeymaF. Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells.J. Cell. Physiol.202123653495350910.1002/jcp.3008733030247
    [Google Scholar]
  20. FengR. WangQ. YuT. HuH. WuG. DuanX. JiangR. XuY. HuangY. Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory signaling axis.Int. Immunopharmacol.202413611234110.1016/j.intimp.2024.11234138810309
    [Google Scholar]
  21. WangN. WangL. YangJ. WangZ. ChengL. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK / SIRT1 signaling pathway.Phytother. Res.20213552639265010.1002/ptr.701033421256
    [Google Scholar]
  22. WangS. TangC. ChenJ. TangH. ZhangL. TangG. Bone marrow fatty acids affect osteoblastic differentiation through miR-92b-3p in the early stages of postmenopausal osteoporosis.Heliyon202396e1651310.1016/j.heliyon.2023.e1651337274695
    [Google Scholar]
  23. GunaratnamK. VidalC. GimbleJ.M. DuqueG. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts.Endocrinology2014155110811610.1210/en.2013‑171224169557
    [Google Scholar]
  24. GilletC. SpruytD. RiguttoS. DallaV.A. BerlierJ. LouisC. DebierC. GaspardN. MalaisseW.J. GangjiV. RasschaertJ. Oleate Abrogates Palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells.Endocrinology2015156114081409310.1210/en.2015‑130326327577
    [Google Scholar]
  25. TaoZ.S. WuX.J. YangM. ShenC.L. Astaxanthin prevents bone loss in osteoporotic rats with palmitic acid through suppressing oxidative stress.Redox Rep.2024291233309610.1080/13510002.2024.233309638623993
    [Google Scholar]
  26. GuoA. LiK. TianH.C. TaoB.L. XiaoQ. JiangD.M. FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation.Biomed. Pharmacother.202214611252410.1016/j.biopha.2021.11252434906775
    [Google Scholar]
  27. KasongaA.E. KrugerM.C. CoetzeeM. Free fatty acid receptor 4-β-arrestin 2 pathway mediates the effects of different classes of unsaturated fatty acids in osteoclasts and osteoblasts.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864328128910.1016/j.bbalip.2018.12.00930578965
    [Google Scholar]
  28. DrosatosZ. DrosatosK. SiegelinY. GongS. KhanS. DykeT.V. Palmitic acid and DGAT1 deficiency enhance Osteoclastogenesis, while Oleic AcidInduced Triglyceride formation prevents it.J. Bone Miner. Res.201429511831195
    [Google Scholar]
  29. SchaepeK. WernerJ. GlenskeK. BartgesT. HenssA. RohnkeM. WenischS. JanekJ. ToF-SIMS study of differentiation of human bone-derived stromal cells: New insights into osteoporosis.Anal. Bioanal. Chem.2017409184425443510.1007/s00216‑017‑0386‑728516281
    [Google Scholar]
  30. Fonolla-JoyaJ. Reyes-GarcíaR. García-MartínA. López-HuertasE. Muñoz-TorresM. Daily intake of milk enriched with n-3 fatty acids, oleic acid, and calcium improves metabolic and bone biomarkers in postmenopausal women.J. Am. Coll. Nutr.201635652953610.1080/07315724.2014.100311427463412
    [Google Scholar]
  31. LambertiniE. PenolazziL. PellieloG. PipinoC. PandolfiA. FioritoS. EpifanoF. GenoveseS. PivaR. Pro-Osteogenic properties of Violina pumpkin (Cucurbita moschata) leaf extracts: Data from in vitro human primary cell cultures.Nutrients2021138263310.3390/nu1308263334444791
    [Google Scholar]
  32. ChauguleS. KashipathiS.S. DakaveS. KrishnaC.M. ChaudhariP. IndapM. ChiplunkarS. Hexane fraction of Turbo brunneus inhibits intermediates of RANK-RANKL signaling pathway and prevent ovariectomy induced bone loss.Front. Endocrinol. (Lausanne)20191060810.3389/fendo.2019.0060831555218
    [Google Scholar]
  33. PathomwichaiwatT. OchareonP. SoonthornchareonnonN. AliZ. KhanI.A. PrathanturarugS. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract.J. Ethnopharmacol.2015160526010.1016/j.jep.2014.11.02625449449
    [Google Scholar]
  34. KimB.Y. YoonH.Y. YunS.I. WooE.R. SongN.K. KimH.G. JeongS.Y. ChungY.S. In vitro and in vivo inhibition of glucocorticoid-induced osteoporosis by the hexane extract of Poncirus trifoliata.Phytother. Res.20112571000101010.1002/ptr.337321225901
    [Google Scholar]
  35. PhromnoiK. YodkeereeS. PinthaK. MapoungS. SuttajitM. SaenjumC. DejkriengkraikulP. Anti-osteoporosis effect of Perilla frutescens leaf hexane fraction through regulating osteoclast and osteoblast differentiation.Molecules202227382410.3390/molecules2703082435164085
    [Google Scholar]
  36. EbelingP.R. NguyenH.H. AleksovaJ. VincentA.J. WongP. MilatF. Secondary osteoporosis.Endocr. Rev.202243224031310.1210/endrev/bnab02834476488
    [Google Scholar]
  37. ChotiyarnwongP. McCloskeyE.V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment.Nat. Rev. Endocrinol.202016843744710.1038/s41574‑020‑0341‑032286516
    [Google Scholar]
  38. ReidI.R. BillingtonE.O. Drug therapy for osteoporosis in older adults.Lancet2022399103291080109210.1016/S0140‑6736(21)02646‑535279261
    [Google Scholar]
  39. QianD. ZhouH. FanP. YuT. PatelA. O’BrienM. WangZ. LuS. TongG. ShanY. WangL. GaoY. XiongY. ZhangL. WangX. LiuY. ZhouS. A traditional chinese medicine plant extract prevents alcohol-induced osteopenia.Front. Pharmacol.20211275408810.3389/fphar.2021.75408835002697
    [Google Scholar]
  40. HuY. HeY. NiuZ. ShenT. ZhangJ. WangX. HuW. ChoJ.Y. A review of the immunomodulatory activities of polysaccharides isolated from Panax species.J. Ginseng Res.2022461233210.1016/j.jgr.2021.06.00335058724
    [Google Scholar]
  41. YangN. LiuD. ZhangX. LiJ. WangM. XuT. LiuZ. Effects of ginsenosides on bone remodelling for novel drug applications: A review.Chin. Med.20201514210.1186/s13020‑020‑00323‑z32391072
    [Google Scholar]
  42. LvW. Understanding traditional Chinese medicine.Hepatobiliary Surg. Nutr.202110684684810.21037/hbsn‑2021‑2535004951
    [Google Scholar]
  43. YuY.L. FengW.L. COVID-19: Perspectives from a clinical doctor and health authority officer.Iran. J. Public Health202049Suppl. 112712910.18502/ijph.v49iS1.368434268220
    [Google Scholar]
  44. TianJ.J. LevyM. SinnottR. A new paradigm of studying traditional Chinese medicine with evidence-based research.Pharmacol. Res.202117210585810.1016/j.phrs.2021.10585834461225
    [Google Scholar]
  45. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑111017921993
    [Google Scholar]
  46. ZhouY. LiX. WangJ. HeR. NgL. LiD. MortimerJ. VarmaS.N. HuJ. ZhaoQ. PengZ. LiuC. SuS. Prediction of the molecular mechanism of corni fructus-epimedii folium- rehmanniae radix praeparata in the treatment of postmenopausal osteoporosis based on network pharmacology and molecular docking.Curr. Computeraided Drug Des.20242028710310.2174/157340991966623060512312937317909
    [Google Scholar]
  47. LiH. WuR. YuH. ZhengQ. ChenY. Bioactive herbal extracts of traditional Chinese medicine applied with the biomaterials: For the current applications and advances in the musculoskeletal system.Front. Pharmacol.20211277804110.3389/fphar.2021.77804134776987
    [Google Scholar]
  48. XuX. LiY. ShiL. HeK. SunY. DingY. MengB. ZhangJ. XiangL. DongJ. LiuM. ZhangJ. XiangL. XiangG. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation.EMBO Rep.2022233e5350910.15252/embr.20215350935068044
    [Google Scholar]
  49. LiX. LinH. ZhangX. JaspersR.T. YuQ. JiY. ForouzanfarT. WangD. HuangS. WuG. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway.J. Cell. Mol. Med.20212524112781128910.1111/jcmm.1705434786818
    [Google Scholar]
  50. MukherjeeA. RotweinP. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development.Mol. Cell. Biol.201232249050010.1128/MCB.06361‑1122064480
    [Google Scholar]
  51. KimY.H. JangW.G. OhS.H. KimJ.W. LeeM.N. SongJ.H. YangJ.W. ZangY. KohJ.T. Fenofibrate induces PPARα and BMP2 expression to stimulate osteoblast differentiation.Biochem. Biophys. Res. Commun.2019520245946510.1016/j.bbrc.2019.10.04831607484
    [Google Scholar]
  52. JiZ. ChengY. YuanP. DangX. GuoX. WangW. Panax notoginseng stimulates alkaline phosphatase activity, collagen synthesis, and mineralization in osteoblastic MC3T3-E1 cells.In Vitro Cell Dev Biol Anim.201551995095710.1007/s11626‑015‑9915‑x
    [Google Scholar]
  53. LiX. WangJ. ChangB. ChenB. GuoC. HouG. HuangD. DuS. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells.J. Ethnopharmacol.2011134226827410.1016/j.jep.2010.11.07521167926
    [Google Scholar]
  54. FengG. LiuW. YuY. TianB. ZhangY. YangF. HuangJ. ZhangP. WangW. LiD. SunS. NiuX. ChaiL. LiJ. Angiogenesis coupled with osteogenesis in a bone tissue engineering scaffold enhances bone repair in osteoporotic bone defects.Biomed. Mater.202318404500210.1088/1748‑605X/accf5537144422
    [Google Scholar]
  55. NohJ.Y. YangY. JungH. Molecular mechanisms and emerging therapeutics for Osteoporosis.Int. J. Mol. Sci.20202120762310.3390/ijms2120762333076329
    [Google Scholar]
  56. YeonJ.T. KimK.J. SonY.J. ParkS.J. KimS.H. Idelalisib inhibits osteoclast differentiation and pre-osteoclast migration by blocking the PI3Kδ-Akt-c-Fos/NFATc1 signaling cascade.Arch. Pharm. Res.201942871272110.1007/s12272‑019‑01163‑831161369
    [Google Scholar]
  57. GoswamiJ. Hernández-SantosN. ZunigaL.A. GaffenS.L. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss.Eur. J. Immunol.200939102831283910.1002/eji.20093967019731364
    [Google Scholar]
  58. ZhaoJ. LiangG. YangJ. HuangH. DouY. GuZ. LiuJ. ZengL. YangW. Liuwei Dihuang pills enhance osteogenic differentiation in MC3T3-E1 cells through the activation of the Wnt/β-Catenin signaling pathway.Pharmaceuticals (Basel)20241719910.3390/ph1701009938256932
    [Google Scholar]
  59. BhadrichaH. PatelV. SinghA.K. SavardekarL. PatilA. SurveS. DesaiM. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women.Sci. Rep.20211111615510.1038/s41598‑021‑95640‑034373550
    [Google Scholar]
  60. Le GoffB. BouvardB. LequerreT. LespessaillesE. MarotteH. PersY.M. CortetB. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases.Mediators Inflamm.201920191910.1155/2019/865930231485194
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303335018241107084224
Loading
/content/journals/emiddt/10.2174/0118715303335018241107084224
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): fracture; gene expression; Ginseng; Network pharmacology; osteoporosis; Panax notoginseng
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test