Skip to content
2000
image of Network Pharmacology Unveils Multi-Systemic Intervention of Panax notoginseng in Osteoporosis via Key Genes and Signaling Pathways

Abstract

Background

(Burk.) F. H. Chen (PN) is a traditional Chinese medicine that has been applied to prevent and treat osteoporosis. The mechanism of PN for osteoporosis remained a mystery.

Objective

The objective was to reveal the therapeutic effect and illuminate the possible mechanism of PN for osteoporosis.

Methods

The Traditional Chinese Medicine Database and Analysis Platform was searched to screen the potent ingredients of the PN and to analyze the potential therapeutic targets for osteoporosis. We excavated four disease databases to collect osteoporosis-related genes. After integrating the gene expression profile of osteoporosis and the chemical-protein data of PN, a protein-protein interaction network was constructed to demonstrate the interactions among the gene products. GO function, KEGG pathway, and docking analyses were executed.

Results

Network pharmacology obtained 31 active ingredients and 134 targets for the treatment of osteoporosis. The key components were beta-elemene, quercetin, methyl palmitate, oleic acid, and hexanal. The results of GO and KEGG analyses showed that was beneficial for osteoporosis by influencing the main pathways including AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, p53 signaling pathway, NF-kappa B signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO signaling pathway, and Wnt signaling pathway, modulating inflammation, metabolism, cell proliferation, cell survival, growth and angiogenesis. intervened in osteoporosis through multi-components, multi-targets, and multi-pathways.

Conclusion

This study illustrates the mechanism of for osteoporosis, providing broader insights for novel research and developments of the Panax species for osteoporosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303335018241107084224
2025-01-09
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303335018241107084224/BMS-EMIDDT-2024-239.html?itemId=/content/journals/emiddt/10.2174/0118715303335018241107084224&mimeType=html&fmt=ahah

References

  1. Mohamad N.V. Ima-Nirwana S. Chin K.Y. Are oxidative stress and inflammation mediators of bone loss due to estrogen deficiency? A review of current evidence. Endocr. Metab. Immune Disord. Drug Targets 2020 20 9 1478 1487 10.2174/1871530320666200604160614 32496996
    [Google Scholar]
  2. Compston J.E. McClung M.R. Leslie W.D. Osteoporosis. Lancet 2019 393 10169 364 376 10.1016/S0140‑6736(18)32112‑3 30696576
    [Google Scholar]
  3. Tang Y. Zhou D. Gan F. Yao Z. Zeng Y. Exploring the mechanisms of sanguinarine in the treatment of osteoporosis by integrating network pharmacology analysis and deep learning technology. Curr Comput Aided Drug Des. 2024 10.2174/0115734099282231240214095025
    [Google Scholar]
  4. Liu C. Xiong Q. Li Q. Lin W. Jiang S. Zhang D. Wang Y. Duan X. Gong P. Kang N. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat. Commun. 2022 13 1 1989 10.1038/s41467‑022‑29633‑6 35418650
    [Google Scholar]
  5. Song S. Guo Y. Yang Y. Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 2022 237 108168 10.1016/j.pharmthera.2022.108168 35283172
    [Google Scholar]
  6. Li H. Xiao Z. Quarles L.D. Li W. Osteoporosis: Mechanism, molecular target and current status on drug development. Curr. Med. Chem. 2021 28 8 1489 1507 10.2174/1875533XMTA1hNTIy2 32223730
    [Google Scholar]
  7. Feng W. Lu A. Huang D. Jiang C. Chen B. Wang X. Network pharmacology reveals the targets and mechanism for Panax notoginseng (Burk.) F. H. Chen against venous thromboembolism. Pharmacol. Res. Mod. Chin. Med. 2022 2 100035 10.1016/j.prmcm.2021.100035
    [Google Scholar]
  8. Wei C. Yue L. You F. Tao C. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen-induced arthritis. Exp. Ther. Med. 2021 22 5 1302 10.3892/etm.2021.10737 34630657
    [Google Scholar]
  9. Ren X. Zhu Y. Xie L. Zhang M. Gao L. He H. Yunnan Baiyao diminishes lipopolysaccharide-induced inflammation in osteoclasts. J. Food Biochem. 2020 44 6 e13182 10.1111/jfbc.13182 32189353
    [Google Scholar]
  10. Li Q. Tian C. Liu X. Li D. Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front. Pharmacol. 2023 14 1203767 10.3389/fphar.2023.1203767 37441527
    [Google Scholar]
  11. Patra S. Muthuraman M.S. Meenu M. Priya P. Pemaiah B. Anti-inflammatory effects of royal poinciana through inhibition of toll-like receptor 4 signaling pathway. Int. Immunopharmacol. 2016 34 199 211 10.1016/j.intimp.2016.02.027 26971223
    [Google Scholar]
  12. Fang Y. Kang Y. Zou H. Cheng X. Xie T. Shi L. Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2018 124 92 102 10.1016/j.fitote.2017.10.015 29066299
    [Google Scholar]
  13. Chen J.C. Duan W.L. Bai R.R. Yao H.Q. Wu X.M. Shang J. Xu J.Y. Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells. Chin. J. Nat. Med. 2015 13 8 618 627 10.1016/S1875‑5364(15)30058‑3 26253495
    [Google Scholar]
  14. Liu M. Chen X. Ma J. Hassan W. Wu H. Ling J. Shang J. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress. Biomed. Pharmacother. 2017 95 1789 1798 10.1016/j.biopha.2017.08.092 28962084
    [Google Scholar]
  15. Ahmad K.A. Ze H. Chen J. Khan F.U. Xuezhuo C. Xu J. Qilong D. The protective effects of a novel synthetic β-elemene derivative on human umbilical vein endothelial cells against oxidative stress-induced injury: Involvement of antioxidation and PI3k/Akt/eNOS/NO signaling pathways. Biomed. Pharmacother. 2018 106 1734 1741 10.1016/j.biopha.2018.07.107 30119249
    [Google Scholar]
  16. Liu M. Mao L. Daoud A. Hassan W. Zhou L. Lin J. Liu J. Shang J. β-elemene inhibits monocyte–endothelial cells interactions via reactive oxygen species/MAPK/NF-κB signaling pathway in vitro. Eur. J. Pharmacol. 2015 766 37 45 10.1016/j.ejphar.2015.09.032 26415979
    [Google Scholar]
  17. Li Y. Selvaraj V. Saravanan S. Abullais S.S. Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int. J. Biol. Macromol. 2024 274 Pt 2 133492 10.1016/j.ijbiomac.2024.133492 38944072
    [Google Scholar]
  18. Wang Y. Che L. Chen X. He Z. Song D. Yuan Y. Liu C. Repurpose dasatinib and quercetin: Targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration. Bioact. Mater. 2023 25 13 28 10.1016/j.bioactmat.2023.01.009 37056256
    [Google Scholar]
  19. Vakili S. Zal F. Mostafavi-pour Z. Savardashtaki A. Koohpeyma F. Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J. Cell. Physiol. 2021 236 5 3495 3509 10.1002/jcp.30087 33030247
    [Google Scholar]
  20. Feng R. Wang Q. Yu T. Hu H. Wu G. Duan X. Jiang R. Xu Y. Huang Y. Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory signaling axis. Int. Immunopharmacol. 2024 136 112341 10.1016/j.intimp.2024.112341 38810309
    [Google Scholar]
  21. Wang N. Wang L. Yang J. Wang Z. Cheng L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK / SIRT1 signaling pathway. Phytother. Res. 2021 35 5 2639 2650 10.1002/ptr.7010 33421256
    [Google Scholar]
  22. Wang S. Tang C. Chen J. Tang H. Zhang L. Tang G. Bone marrow fatty acids affect osteoblastic differentiation through miR-92b-3p in the early stages of postmenopausal osteoporosis. Heliyon 2023 9 6 e16513 10.1016/j.heliyon.2023.e16513 37274695
    [Google Scholar]
  23. Gunaratnam K. Vidal C. Gimble J.M. Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology 2014 155 1 108 116 10.1210/en.2013‑1712 24169557
    [Google Scholar]
  24. Gillet C. Spruyt D. Rigutto S. Dalla V.A. Berlier J. Louis C. Debier C. Gaspard N. Malaisse W.J. Gangji V. Rasschaert J. Oleate Abrogates Palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology 2015 156 11 4081 4093 10.1210/en.2015‑1303 26327577
    [Google Scholar]
  25. Tao Z.S. Wu X.J. Yang M. Shen C.L. Astaxanthin prevents bone loss in osteoporotic rats with palmitic acid through suppressing oxidative stress. Redox Rep. 2024 29 1 2333096 10.1080/13510002.2024.2333096 38623993
    [Google Scholar]
  26. Guo A. Li K. Tian H.C. Tao B.L. Xiao Q. Jiang D.M. FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation. Biomed. Pharmacother. 2022 146 112524 10.1016/j.biopha.2021.112524 34906775
    [Google Scholar]
  27. Kasonga A.E. Kruger M.C. Coetzee M. Free fatty acid receptor 4-β-arrestin 2 pathway mediates the effects of different classes of unsaturated fatty acids in osteoclasts and osteoblasts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 3 281 289 10.1016/j.bbalip.2018.12.009 30578965
    [Google Scholar]
  28. Drosatos Z. Drosatos K. Siegelin Y. Gong S. Khan S. Dyke T.V. Palmitic acid and DGAT1 deficiency enhance Osteoclastogenesis, while Oleic AcidInduced Triglyceride formation prevents it. J. Bone Miner. Res. n.d.
    [Google Scholar]
  29. Schaepe K. Werner J. Glenske K. Bartges T. Henss A. Rohnke M. Wenisch S. Janek J. ToF-SIMS study of differentiation of human bone-derived stromal cells: New insights into osteoporosis. Anal. Bioanal. Chem. 2017 409 18 4425 4435 10.1007/s00216‑017‑0386‑7 28516281
    [Google Scholar]
  30. Fonolla-Joya J. Reyes-García R. García-Martín A. López-Huertas E. Muñoz-Torres M. Daily intake of milk enriched with n-3 Fatty Acids, Oleic Acid, and Calcium improves metabolic and bone biomarkers in postmenopausal women. J. Am. Coll. Nutr. 2016 35 6 529 536 10.1080/07315724.2014.1003114 27463412
    [Google Scholar]
  31. Lambertini E. Penolazzi L. Pellielo G. Pipino C. Pandolfi A. Fiorito S. Epifano F. Genovese S. Piva R. Pro-Osteogenic properties of Violina pumpkin (Cucurbita moschata) leaf extracts: Data from in vitro human primary cell cultures. Nutrients 2021 13 8 2633 10.3390/nu13082633 34444791
    [Google Scholar]
  32. Chaugule S. Kashipathi S.S. Dakave S. Krishna C.M. Chaudhari P. Indap M. Chiplunkar S. Hexane fraction of Turbo brunneus inhibits intermediates of RANK-RANKL signaling pathway and prevent ovariectomy induced bone loss. Front. Endocrinol. (Lausanne) 2019 10 608 10.3389/fendo.2019.00608 31555218
    [Google Scholar]
  33. Pathomwichaiwat T. Ochareon P. Soonthornchareonnon N. Ali Z. Khan I.A. Prathanturarug S. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract. J. Ethnopharmacol. 2015 160 52 60 10.1016/j.jep.2014.11.026 25449449
    [Google Scholar]
  34. Kim B.Y. Yoon H.Y. Yun S.I. Woo E.R. Song N.K. Kim H.G. Jeong S.Y. Chung Y.S. In vitro and in vivo inhibition of glucocorticoid-induced osteoporosis by the hexane extract of Poncirus trifoliata. Phytother. Res. 2011 25 7 1000 1010 10.1002/ptr.3373 21225901
    [Google Scholar]
  35. Phromnoi K. Yodkeeree S. Pintha K. Mapoung S. Suttajit M. Saenjum C. Dejkriengkraikul P. Anti-Osteoporosis effect of Perilla frutescens Leaf Hexane fraction through regulating Osteoclast and Osteoblast differentiation. Molecules 2022 27 3 824 10.3390/molecules27030824 35164085
    [Google Scholar]
  36. Ebeling P.R. Nguyen H.H. Aleksova J. Vincent A.J. Wong P. Milat F. Secondary Osteoporosis. Endocr. Rev. 2022 43 2 240 313 10.1210/endrev/bnab028 34476488
    [Google Scholar]
  37. Chotiyarnwong P. McCloskey E.V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 2020 16 8 437 447 10.1038/s41574‑020‑0341‑0 32286516
    [Google Scholar]
  38. Reid I.R. Billington E.O. Drug therapy for osteoporosis in older adults. Lancet 2022 399 10329 1080 1092 10.1016/S0140‑6736(21)02646‑5 35279261
    [Google Scholar]
  39. Qian D. Zhou H. Fan P. Yu T. Patel A. O’Brien M. Wang Z. Lu S. Tong G. Shan Y. Wang L. Gao Y. Xiong Y. Zhang L. Wang X. Liu Y. Zhou S. A traditional chinese medicine plant extract prevents alcohol-induced Osteopenia. Front. Pharmacol. 2021 12 754088 10.3389/fphar.2021.754088 35002697
    [Google Scholar]
  40. Hu Y. He Y. Niu Z. Shen T. Zhang J. Wang X. Hu W. Cho J.Y. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J. Ginseng Res. 2022 46 1 23 32 10.1016/j.jgr.2021.06.003 35058724
    [Google Scholar]
  41. Yang N. Liu D. Zhang X. Li J. Wang M. Xu T. Liu Z. Effects of ginsenosides on bone remodelling for novel drug applications: A review. Chin. Med. 2020 15 1 42 10.1186/s13020‑020‑00323‑z 32391072
    [Google Scholar]
  42. Lv W. Understanding traditional Chinese medicine. Hepatobiliary Surg. Nutr. 2021 10 6 846 848 10.21037/hbsn‑2021‑25 35004951
    [Google Scholar]
  43. Yu Y.L. Feng W.L. COVID-19: Perspectives from a clinical doctor and health authority officer. Iran. J. Public Health 2020 49 Suppl. 1 127 129 10.18502/ijph.v49iS1.3684 34268220
    [Google Scholar]
  44. Tian J.J. Levy M. Sinnott R. A new paradigm of studying traditional Chinese medicine with evidence-based research. Pharmacol. Res. 2021 172 105858 10.1016/j.phrs.2021.105858 34461225
    [Google Scholar]
  45. Hopkins A.L. Network pharmacology. Nat. Biotechnol. 2007 25 10 1110 1111 10.1038/nbt1007‑1110 17921993
    [Google Scholar]
  46. Zhou Y. Li X. Wang J. He R. Ng L. Li D. Mortimer J. Varma S.N. Hu J. Zhao Q. Peng Z. Liu C. Su S. Prediction of the molecular mechanism of corni fructus-epimedii folium- rehmanniae radix praeparata in the treatment of postmenopausal osteoporosis based on network pharmacology and molecular docking. Curr. Computeraided Drug Des. 2024 20 2 87 103 10.2174/1573409919666230605123129 37317909
    [Google Scholar]
  47. Li H. Wu R. Yu H. Zheng Q. Chen Y. Bioactive herbal extracts of traditional Chinese medicine applied with the biomaterials: For the current applications and advances in the musculoskeletal system. Front. Pharmacol. 2021 12 778041 10.3389/fphar.2021.778041 34776987
    [Google Scholar]
  48. Xu X. Li Y. Shi L. He K. Sun Y. Ding Y. Meng B. Zhang J. Xiang L. Dong J. Liu M. Zhang J. Xiang L. Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep. 2022 23 3 e53509 10.15252/embr.202153509 35068044
    [Google Scholar]
  49. Li X. Lin H. Zhang X. Jaspers R.T. Yu Q. Ji Y. Forouzanfar T. Wang D. Huang S. Wu G. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway. J. Cell. Mol. Med. 2021 25 24 11278 11289 10.1111/jcmm.17054 34786818
    [Google Scholar]
  50. Mukherjee A. Rotwein P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol. Cell. Biol. 2012 32 2 490 500 10.1128/MCB.06361‑11 22064480
    [Google Scholar]
  51. Kim Y.H. Jang W.G. Oh S.H. Kim J.W. Lee M.N. Song J.H. Yang J.W. Zang Y. Koh J.T. Fenofibrate induces PPARα and BMP2 expression to stimulate osteoblast differentiation. Biochem. Biophys. Res. Commun. 2019 520 2 459 465 10.1016/j.bbrc.2019.10.048 31607484
    [Google Scholar]
  52. Ji Z. Cheng Y. Yuan P. Dang X. Guo X. Wang W. Panax notoginseng stimulates alkaline phosphatase activity, collagen synthesis, and mineralization in osteoblastic MC3T3-E1 cells. In Vitro Cell Dev Biol Anim. 2015 51 9 950 957 10.1007/s11626‑015‑9915‑x
    [Google Scholar]
  53. Li X. Wang J. Chang B. Chen B. Guo C. Hou G. Huang D. Du S. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J. Ethnopharmacol. 2011 134 2 268 274 10.1016/j.jep.2010.11.075 21167926
    [Google Scholar]
  54. Feng G. Liu W. Yu Y. Tian B. Zhang Y. Yang F. Huang J. Zhang P. Wang W. Li D. Sun S. Niu X. Chai L. Li J. Angiogenesis coupled with osteogenesis in a bone tissue engineering scaffold enhances bone repair in osteoporotic bone defects. Biomed. Mater. 2023 18 4 045002 10.1088/1748‑605X/accf55 37144422
    [Google Scholar]
  55. Noh J.Y. Yang Y. Jung H. Molecular mechanisms and emerging therapeutics for Osteoporosis. Int. J. Mol. Sci. 2020 21 20 7623 10.3390/ijms21207623 33076329
    [Google Scholar]
  56. Yeon J.T. Kim K.J. Son Y.J. Park S.J. Kim S.H. Idelalisib inhibits osteoclast differentiation and pre-osteoclast migration by blocking the PI3Kδ-Akt-c-Fos/NFATc1 signaling cascade. Arch. Pharm. Res. 2019 42 8 712 721 10.1007/s12272‑019‑01163‑8 31161369
    [Google Scholar]
  57. Goswami J. Hernández-Santos N. Zuniga L.A. Gaffen S.L. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur. J. Immunol. 2009 39 10 2831 2839 10.1002/eji.200939670 19731364
    [Google Scholar]
  58. Zhao J. Liang G. Yang J. Huang H. Dou Y. Gu Z. Liu J. Zeng L. Yang W. Liuwei Dihuang pills enhance osteogenic differentiation in MC3T3-E1 cells through the activation of the Wnt/β-Catenin signaling pathway. Pharmaceuticals (Basel) 2024 17 1 99 10.3390/ph17010099 38256932
    [Google Scholar]
  59. Bhadricha H. Patel V. Singh A.K. Savardekar L. Patil A. Surve S. Desai M. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci. Rep. 2021 11 1 16155 10.1038/s41598‑021‑95640‑0 34373550
    [Google Scholar]
  60. Le Goff B. Bouvard B. Lequerre T. Lespessailles E. Marotte H. Pers Y.M. Cortet B. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases. Mediators Inflamm. 2019 2019 1 9 10.1155/2019/8659302 31485194
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303335018241107084224
Loading
/content/journals/emiddt/10.2174/0118715303335018241107084224
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Panax notoginseng ; osteoporosis ; Network pharmacology ; fracture ; gene expression ; Ginseng
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test