Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

Objective

This study aimed to investigate the protective effects of H on high glucose-induced oxidative damage and apoptosis in human skin cells.

Methods

HaCaT keratinocytes and HSF fibroblasts were treated with high glucose or AGEs. Cell viability, oxidative stress markers, inflammatory cytokines, and apoptosis were analyzed. AGEs/RAGE/NF-κB signaling was evaluated via Western blot.

Results

H treatment significantly reduced ROS, MDA, IL-1β, and TNF-α levels, while enhancing SOD and GSH activity. It also inhibited AGEs/RAGE/NF-κB signaling and apoptosis.

Conclusion

Hydrogen therapy protects against oxidative stress and inflammation induced by high glucose or AGEs, offering potential as an adjunctive treatment for diabetic wound healing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303369584241231141001
2025-01-08
2025-12-23
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/14/EMIDDT-25-14-04.html?itemId=/content/journals/emiddt/10.2174/0118715303369584241231141001&mimeType=html&fmt=ahah

References

  1. SenC.K. Human wound and its burden: Updated 2020 compendium of estimates.Adv. Wound Care (New Rochelle)202110528129210.1089/wound.2021.002633733885
    [Google Scholar]
  2. JH. Chronic diabetic wounds and their treatment with skin substitutes.Cells2021103655
    [Google Scholar]
  3. ZhengW. LiH. GoY. ChanX.H.F. HuangQ. WuJ. Research advances on the damage mechanism of skin glycation and related inhibitors.Nutrients20221421458810.3390/nu1421458836364850
    [Google Scholar]
  4. ReddyV.P. AryalP. DarkwahE.K. Advanced glycation end products in health and disease.Microorganisms2022109184810.3390/microorganisms1009184836144449
    [Google Scholar]
  5. HuoS. WangQ. ShiW. PengL. JiangY. ZhuM. GuoJ. PengD. WangM. MenL. HuangB. LvJ. LinL. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury.Int. J. Mol. Sci.2023242166710.3390/ijms2402166736675183
    [Google Scholar]
  6. GutowskaK. KoźniewskiK. WąsowskiM. JonasM.I. BartoszewiczZ. LisikW. JonasM. BindaA. JaworskiP. TarnowskiW. NoszczykB. Puzianowska-KuźnickaM. CzajkowskiK. KuryłowiczA. AGER-1 long non-coding RNA levels correlate with the expression of the advanced glycosylation end-product receptor, a regulator of the inflammatory response in visceral adipose tissue of women with obesity and type 2 diabetes mellitus.Int. J. Mol. Sci.202324241744710.3390/ijms24241744738139276
    [Google Scholar]
  7. ChenC. LiuX. LiL. GuoM. HeY. DongY. MengH. YiF. Study of the mechanism by gentiopicroside protects against skin fibroblast glycation damage via the RAGE pathway.Sci. Rep.2024141468510.1038/s41598‑024‑55525‑438409584
    [Google Scholar]
  8. ZhuQ. LiG. MaL. ChenB. ZhangD. GaoJ. DengS. ChenY. Virgin camellia seed oil improves glycolipid metabolism in the kidney of high fat-fed rats through AMPK-SREBP pathway.Nutrients20231523488810.3390/nu1523488838068746
    [Google Scholar]
  9. KwonR.H. ThakuN. TimalsinaB. ParkS.E. ChoiJ.S. JungH.A. Inhibition mechanism of components isolated from Morus alba branches on diabetes and diabetic complications via experimental and molecular docking analyses.Antioxidants202211238310.3390/antiox1102038335204264
    [Google Scholar]
  10. LK. Oxidative stress and inflammatory markers in prediabetes and diabetes.J. Physiol. Pharmacol.2019706809824
    [Google Scholar]
  11. CimminoP.T. AmmendolaR. CattaneoF. EspositoG. NOX dependent ROS generation and cell metabolism.Int. J. Mol. Sci.2023243208610.3390/ijms2403208636768405
    [Google Scholar]
  12. ChungH. LeeS.W. HyunM. KimS.Y. ChoH.G. LeeE.S. KangJ.S. ChungC.H. LeeE.Y. Curcumin blocks high glucose-induced podocyte injury via RIPK3-dependent pathway.Front. Cell Dev. Biol.20221080057410.3389/fcell.2022.80057435706905
    [Google Scholar]
  13. RodríguezA.G. RodríguezJ.Z. BarretoA. Sanabria-BarreraS. IglesiasJ. MoralesL. Impact of acute high glucose on mitochondrial function in a model of endothelial cells: Role of PDGF-C.Int. J. Mol. Sci.2023245439410.3390/ijms2405439436901825
    [Google Scholar]
  14. SiewieraK. Labieniec-WatalaM. KassassirH. WolskaN. PolakD. WatalaC. Potential role of mitochondria as modulators of blood platelet activation and reactivity in diabetes and effect of metformin on blood platelet bioenergetics and platelet activation.Int. J. Mol. Sci.2022237366610.3390/ijms2307366635409027
    [Google Scholar]
  15. FanY. YangQ. YangY. GaoZ. MaY. ZhangL. LiangW. DingG. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation.Int. J. Biol. Sci.201915370171310.7150/ijbs.2932330745856
    [Google Scholar]
  16. KozlovA.V. JavadovS. SommerN. Cellular ROS and antioxidants: Physiological and pathological role.Antioxidants202413560210.3390/antiox1305060238790707
    [Google Scholar]
  17. OhsawaI. IshikawaM. TakahashiK. WatanabeM. NishimakiK. YamagataK. KatsuraK. KatayamaY. AsohS. OhtaS. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.Nat. Med.200713668869410.1038/nm157717486089
    [Google Scholar]
  18. ChenH. SunY.P. LiY. LiuW.W. XiangH.G. FanL.Y. SunQ. XuX.Y. CaiJ.M. RuanC.P. SuN. YanR.L. SunX.J. WangQ. Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats.Biochem. Biophys. Res. Commun.2010393230831310.1016/j.bbrc.2010.02.00520138831
    [Google Scholar]
  19. ZhengJ. Saturated hydrogen saline protects the lung against oxygen toxicity.Undersea Hyperb. Med.2010373185192
    [Google Scholar]
  20. SunQ. CaiJ. ZhouJ. TaoH. ZhangJ.H. ZhangW. SunX. Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity.Crit. Care Med.201139476576910.1097/CCM.0b013e318206bf4421200321
    [Google Scholar]
  21. SunQ. KangZ. CaiJ. LiuW. LiuY. ZhangJ.H. DenobleP.J. TaoH. SunX. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats.Exp. Biol. Med.2009234101212121910.3181/0812‑RM‑34919596825
    [Google Scholar]
  22. ZhaoC. GuoY. WangR. ChengC. ChenX. Effect of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia.Korean J. Physiol. Pharmacol.202125651752310.4196/kjpp.2021.25.6.51734697262
    [Google Scholar]
  23. ZhengM. YuH. XueY. YangT. TuQ. XiongK. DengD. LuL. HuangN. The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus.Mol. Cell. Biochem.202147683089309710.1007/s11010‑021‑04145‑x33830396
    [Google Scholar]
  24. XiaoH. LiY. LuoD. DongJ. ZhouL. ZhaoS. ZhengQ. WangH. CuiM. FanS. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota.Exp. Mol. Med.2018501e433e43310.1038/emm.2017.24629371696
    [Google Scholar]
  25. YuP. The Research on Role of Hydrogen in the Trauma Healing of DM Mice.Chongqing, ChinaThird Military Medical University of Chinese P.L.A.2008
    [Google Scholar]
  26. ChenX. CuiJ. ZhaiX. ZhangJ. GuZ. ZhiX. WengW. PanP. CaoL. JiF. WangZ. SuJ. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages.Cell. Physiol. Biochem.201847117619010.1159/00048976429763919
    [Google Scholar]
  27. Twarda-ClapaA. OlczakA. BiałkowskaA.M. KoziołkiewiczM. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs.Cells2022118131210.3390/cells1108131235455991
    [Google Scholar]
  28. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom1204054235454131
    [Google Scholar]
  29. LiY. ZhengX. GuoJ. SamuraM. GeY. ZhaoS. LiG. ChenX. ShojiT. IkezoeT. MiyataM. XuB. DalmanR.L. Treatment with small molecule inhibitors of advanced glycation end‐products formation and advanced glycation end‐products-mediated collagen cross-linking promotes experimental aortic aneurysm progression in diabetic mice.J. Am. Heart Assoc.20231210e02808110.1161/JAHA.122.02808137158066
    [Google Scholar]
  30. Merecz-SadowskaA. SitarekP. KucharskaE. KowalczykT. ZajdelK. CeglińskiT. ZajdelR. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells.Antioxidants202110572610.3390/antiox1005072634063059
    [Google Scholar]
  31. HuF. SunD.S. WangK.L. ShangD.Y. Nanomedicine of plant origin for the treatment of metabolic disorders.Front. Bioeng. Biotechnol.2022981191710.3389/fbioe.2021.81191735223819
    [Google Scholar]
  32. ZhangP. LiT. WuX. NiceE.C. HuangC. ZhangY. Oxidative stress and diabetes: Antioxidative strategies.Front. Med.202014558360010.1007/s11684‑019‑0729‑132248333
    [Google Scholar]
  33. WangB. LiZ. MaoL. ZhaoM. YangB. TaoX. LiY. YinG. Hydrogen: A novel treatment strategy in kidney disease.Kidney Dis.20228212613610.1159/00052098135527991
    [Google Scholar]
  34. YangW.C. LiT. WanQ. ZhangX. SunL.Y. ZhangY.R. LaiP.C. LiW. Molecular hydrogen mediates neurorestorative effects after stroke in diabetic rats: The TLR4/NF-κB inflammatory pathway.J. Neuroimmune Pharmacol.2023181-2909910.1007/s11481‑022‑10051‑w35895245
    [Google Scholar]
  35. DumbuyaJ.S. ChenX. DuJ. LiS. LiangL. XieH. ZengQ. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model.Int. Immunopharmacol.202312311075810.1016/j.intimp.2023.11075837556997
    [Google Scholar]
  36. ManaenkoA. LekicT. MaQ. ZhangJ.H. TangJ. Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice.Crit. Care Med.20134151266127510.1097/CCM.0b013e31827711c923388512
    [Google Scholar]
  37. JiangB. LiY. DaiW. WuA. WuH. MaoD. Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid hemorrhage.Acta Cir. Bras.2021368e36080410.1590/acb36080434644772
    [Google Scholar]
  38. ChenK.D. WangK.L. ChenC. ZhuY.J. TangW.W. WangY.J. ChenZ.P. HeL.H. ChenY.G. ZhangW. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway.World J. Gastroenterol.202430202709272510.3748/wjg.v30.i20.270938855154
    [Google Scholar]
  39. ZolotarenkoA.D. ZolotarenkoA.D. VezirogluA. VezirogluT.N. ShvachkoN.A. PomytkinA.P. GavrylyukN.A. SchurD.V. RamazanovT.S. GabdullinM.T. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19.Int. J. Hydrogen Energy202247117281728810.1016/j.ijhydene.2021.03.02533746342
    [Google Scholar]
  40. DeryuginaA.V. DanilovaD.A. BrichkinY.D. TaranovE.V. NazarovE.I. PichuginV.V. MedvedevA.P. RiazanovM.V. FedorovS.A. SmorkalovA.Y. MakarovE.V. Molecular hydrogen exposure improves functional state of red blood cells in the early postoperative period.Med. Gas Res.2023132596610.4103/2045‑9912.35647336204784
    [Google Scholar]
  41. HiranoS. IchikawaY. SatoB. TakefujiY. SatohF. Clinical use and treatment mechanism of molecular hydrogen in the treatment of various kidney diseases including diabetic kidney disease.Biomedicines20231110281710.3390/biomedicines1110281737893190
    [Google Scholar]
  42. DingY. ZhouY. LingP. FengX. LuoS. ZhengX. LittleP.J. XuS. WengJ. Metformin in cardiovascular diabetology: A focused review of its impact on endothelial function.Theranostics202111199376939610.7150/thno.6470634646376
    [Google Scholar]
  43. YanH. FanM. LiuH. XiaoT. HanD. CheR. ZhangW. ZhouX. WangJ. ZhangC. YangX. ZhangJ. LiZ. Microbial hydrogen “manufactory” for enhanced gas therapy and self-activated immunotherapy via reduced immune escape.J. Nanobiotechnology202220128010.1186/s12951‑022‑01440‑735705974
    [Google Scholar]
  44. LiQ. JiaoY. YuY. WangG. YuY. Hydrogen-rich medium alleviates high glucose-induced oxidative stress and parthanatos in rat Schwann cells in-vitro.Mol. Med. Rep.201810.3892/mmr.2018.963130431142
    [Google Scholar]
  45. HanX.C. YeZ.H. HuH.J. SunQ. FanD.F. Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats.Med. Gas Res.2023132727710.4103/2045‑9912.34517136204786
    [Google Scholar]
  46. LiuZ. WangM. ZhangC. ZhouS. JiG. Molecular functions of ceruloplasmin in metabolic disease pathology.Diabetes Metab. Syndr. Obes.20221569571110.2147/DMSO.S34664835264864
    [Google Scholar]
  47. AlaM. IacobiniC. Sestrin2 signaling pathway regulates podocyte biology and protects against diabetic nephropathy.J. Diabetes Res.2023202311510.1155/2023/877687836818747
    [Google Scholar]
  48. ChenL. WuD. ZhouL. YeY. Platelet-rich plasma promotes diabetic ulcer repair through inhibition of ferroptosis.Ann. Transl. Med.202210201121112110.21037/atm‑22‑465436388823
    [Google Scholar]
  49. JungC.Y. YooT.H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease.Diabetes Metab. J.202246218119710.4093/dmj.2021.032935385633
    [Google Scholar]
  50. LuyaoX. WenhaiG. JiayingD. YaC. YunC. WeiL. JieanX. WenS. XiaodongZ. ChangjunW. HongzhiY. JinwenX. YaxingZ. Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate immune signaling and pyroptosis.Int. Immunopharmacol.202412711139910.1016/j.intimp.2023.11139938142641
    [Google Scholar]
  51. HassaneinM. ShafiT. Assessment of glycemia in chronic kidney disease.BMC Med.202220111710.1186/s12916‑022‑02316‑135414081
    [Google Scholar]
  52. PajaresM. CuadradoA. EngedalN. JirsovaZ. CahovaM. The role of free radicals in autophagy regulation: Implications for ageing.Oxid. Med. Cell. Longev.201820181245074810.1155/2018/245074829682156
    [Google Scholar]
  53. XuK. ZhangL. YuN. RenZ. WangT. ZhangY. ZhaoX. YuT. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: A systematic review.Stem Cell Res. Ther.20231417410.1186/s13287‑023‑03324‑537038234
    [Google Scholar]
  54. ParekhP.J. NayiV.R. JohnsonD.A. VinikA.I. The role of gut microflora and the cholinergic anti-inflammatory neuroendocrine system in diabetes mellitus.Front. Endocrinol.201675510.3389/fendo.2016.0005527375553
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303369584241231141001
Loading
/content/journals/emiddt/10.2174/0118715303369584241231141001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test