Skip to content
2000
image of Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells

Abstract

Background

Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

Objective

This study aimed to investigate the protective effects of H on high glucose-induced oxidative damage and apoptosis in human skin cells.

Methods

HaCaT keratinocytes and HSF fibroblasts were treated with high glucose or AGEs. Cell viability, oxidative stress markers, inflammatory cytokines, and apoptosis were analyzed. AGEs/RAGE/NF-κB signaling was evaluated Western blot.

Results

H treatment significantly reduced ROS, MDA, IL-1β, and TNF-α levels, while enhancing SOD and GSH activity. It also inhibited AGEs/RAGE/NF-κB signaling and apoptosis.

Conclusion

Hydrogen therapy protects against oxidative stress and inflammation induced by high glucose or AGEs, offering potential as an adjunctive treatment for diabetic wound healing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303369584241231141001
2025-01-08
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303369584241231141001/BMS-EMIDDT-2024-431.html?itemId=/content/journals/emiddt/10.2174/0118715303369584241231141001&mimeType=html&fmt=ahah

References

  1. Sen C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care (New Rochelle) 2021 10 5 281 292 10.1089/wound.2021.0026 33733885
    [Google Scholar]
  2. J H. Chronic diabetic wounds and their treatment with skin substitutes. Cells 2021 10 3 655
    [Google Scholar]
  3. Zheng W. Li H. Go Y. Chan X.H.F. Huang Q. Wu J. Research advances on the damage mechanism of skin glycation and related inhibitors. Nutrients 2022 14 21 4588 10.3390/nu14214588 36364850
    [Google Scholar]
  4. Reddy V.P. Aryal P. Darkwah E.K. Advanced glycation end products in health and disease. Microorganisms 2022 10 9 1848 10.3390/microorganisms10091848 36144449
    [Google Scholar]
  5. Huo S. Wang Q. Shi W. Peng L. Jiang Y. Zhu M. Guo J. Peng D. Wang M. Men L. Huang B. Lv J. Lin L. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int. J. Mol. Sci. 2023 24 2 1667 10.3390/ijms24021667 36675183
    [Google Scholar]
  6. Gutowska K. Koźniewski K. Wąsowski M. Jonas M.I. Bartoszewicz Z. Lisik W. Jonas M. Binda A. Jaworski P. Tarnowski W. Noszczyk B. Puzianowska-Kuźnicka M. Czajkowski K. Kuryłowicz A. AGER-1 long non-coding RNA levels correlate with the expression of the advanced glycosylation end-product receptor, a regulator of the inflammatory response in visceral adipose tissue of women with obesity and type 2 diabetes mellitus. Int. J. Mol. Sci. 2023 24 24 17447 10.3390/ijms242417447 38139276
    [Google Scholar]
  7. Chen C. Liu X. Li L. Guo M. He Y. Dong Y. Meng H. Yi F. Study of the mechanism by gentiopicroside protects against skin fibroblast glycation damage via the RAGE pathway. Sci. Rep. 2024 14 1 4685 10.1038/s41598‑024‑55525‑4 38409584
    [Google Scholar]
  8. Zhu Q. Li G. Ma L. Chen B. Zhang D. Gao J. Deng S. Chen Y. Virgin camellia seed oil improves glycolipid metabolism in the kidney of high fat-fed rats through AMPK-SREBP pathway. Nutrients 2023 15 23 4888 10.3390/nu15234888 38068746
    [Google Scholar]
  9. Kwon R.H. Thaku N. Timalsina B. Park S.E. Choi J.S. Jung H.A. Inhibition mechanism of components isolated from Morus alba branches on diabetes and diabetic complications via experimental and molecular docking analyses. Antioxidants 2022 11 2 383 10.3390/antiox11020383 35204264
    [Google Scholar]
  10. L K. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019 70 6 809 824
    [Google Scholar]
  11. Pecchillo Cimmino T. Ammendola R. Cattaneo F. Esposito G. NOX dependent ROS generation and cell metabolism. Int. J. Mol. Sci. 2023 24 3 2086 10.3390/ijms24032086 36768405
    [Google Scholar]
  12. Chung H. Lee S.W. Hyun M. Kim S.Y. Cho H.G. Lee E.S. Kang J.S. Chung C.H. Lee E.Y. Curcumin blocks high glucose-induced podocyte injury via RIPK3-dependent pathway. Front. Cell Dev. Biol. 2022 10 800574 10.3389/fcell.2022.800574 35706905
    [Google Scholar]
  13. Rodríguez A.G. Rodríguez J.Z. Barreto A. Sanabria-Barrera S. Iglesias J. Morales L. Impact of acute high glucose on mitochondrial function in a model of endothelial cells: Role of PDGF-C. Int. J. Mol. Sci. 2023 24 5 4394 10.3390/ijms24054394 36901825
    [Google Scholar]
  14. Siewiera K. Labieniec-Watala M. Kassassir H. Wolska N. Polak D. Watala C. Potential role of mitochondria as modulators of blood platelet activation and reactivity in diabetes and effect of metformin on blood platelet bioenergetics and platelet activation. Int. J. Mol. Sci. 2022 23 7 3666 10.3390/ijms23073666 35409027
    [Google Scholar]
  15. Fan Y. Yang Q. Yang Y. Gao Z. Ma Y. Zhang L. Liang W. Ding G. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int. J. Biol. Sci. 2019 15 3 701 713 10.7150/ijbs.29323 30745856
    [Google Scholar]
  16. Kozlov A.V. Javadov S. Sommer N. Cellular ROS and antioxidants: Physiological and pathological role. Antioxidants 2024 13 5 602 10.3390/antiox13050602 38790707
    [Google Scholar]
  17. Ohsawa I. Ishikawa M. Takahashi K. Watanabe M. Nishimaki K. Yamagata K. Katsura K. Katayama Y. Asoh S. Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007 13 6 688 694 10.1038/nm1577 17486089
    [Google Scholar]
  18. Chen H. Sun Y.P. Li Y. Liu W.W. Xiang H.G. Fan L.Y. Sun Q. Xu X.Y. Cai J.M. Ruan C.P. Su N. Yan R.L. Sun X.J. Wang Q. Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem. Biophys. Res. Commun. 2010 393 2 308 313 10.1016/j.bbrc.2010.02.005 20138831
    [Google Scholar]
  19. Zheng J. Saturated hydrogen saline protects the lung against oxygen toxicity. Undersea Hyperb. Med. 2010 37 3 185 192
    [Google Scholar]
  20. Sun Q. Cai J. Zhou J. Tao H. Zhang J.H. Zhang W. Sun X. Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity. Crit. Care Med. 2011 39 4 765 769 10.1097/CCM.0b013e318206bf44 21200321
    [Google Scholar]
  21. Sun Q. Kang Z. Cai J. Liu W. Liu Y. Zhang J.H. Denoble P.J. Tao H. Sun X. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp. Biol. Med. 2009 234 10 1212 1219 10.3181/0812‑RM‑349 19596825
    [Google Scholar]
  22. Zhao C. Guo Y. Wang R. Cheng C. Chen X. Effect of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia. Korean J. Physiol. Pharmacol. 2021 25 6 517 523 10.4196/kjpp.2021.25.6.517 34697262
    [Google Scholar]
  23. Zheng M. Yu H. Xue Y. Yang T. Tu Q. Xiong K. Deng D. Lu L. Huang N. The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus. Mol. Cell. Biochem. 2021 476 8 3089 3097 10.1007/s11010‑021‑04145‑x 33830396
    [Google Scholar]
  24. Xiao H. Li Y. Luo D. Dong J. Zhou L. Zhao S. Zheng Q. Wang H. Cui M. Fan S. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp. Mol. Med. 2018 50 1 e433 e433 10.1038/emm.2017.246 29371696
    [Google Scholar]
  25. Yu P. The Research on Role of Hydrogen in the Trauma Healing of DM Mice. Chongqing, China Third Military Medical University of Chinese P.L.A. 2008
    [Google Scholar]
  26. Chen X. Cui J. Zhai X. Zhang J. Gu Z. Zhi X. Weng W. Pan P. Cao L. Ji F. Wang Z. Su J. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages. Cell. Physiol. Biochem. 2018 47 1 176 190 10.1159/000489764 29763919
    [Google Scholar]
  27. Twarda-Clapa A. Olczak A. Białkowska A.M. Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells 2022 11 8 1312 10.3390/cells11081312 35455991
    [Google Scholar]
  28. Khalid M. Petroianu G. Adem A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022 12 4 542 10.3390/biom12040542 35454131
    [Google Scholar]
  29. Li Y. Zheng X. Guo J. Samura M. Ge Y. Zhao S. Li G. Chen X. Shoji T. Ikezoe T. Miyata M. Xu B. Dalman R.L. Treatment with small molecule inhibitors of advanced glycation end-products formation and advanced glycation end-products-mediated collagen cross-linking promotes experimental aortic aneurysm progression in diabetic mice. J. Am. Heart Assoc. 2023 12 10 e028081 10.1161/JAHA.122.028081 37158066
    [Google Scholar]
  30. Merecz-Sadowska A. Sitarek P. Kucharska E. Kowalczyk T. Zajdel K. Cegliński T. Zajdel R. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 2021 10 5 726 10.3390/antiox10050726 34063059
    [Google Scholar]
  31. Hu F. Sun D.S. Wang K.L. Shang D.Y. Nanomedicine of plant origin for the treatment of metabolic disorders. Front. Bioeng. Biotechnol. 2022 9 811917 10.3389/fbioe.2021.811917 35223819
    [Google Scholar]
  32. Zhang P. Li T. Wu X. Nice E.C. Huang C. Zhang Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020 14 5 583 600 10.1007/s11684‑019‑0729‑1 32248333
    [Google Scholar]
  33. Wang B. Li Z. Mao L. Zhao M. Yang B. Tao X. Li Y. Yin G. Hydrogen: A novel treatment strategy in kidney disease. Kidney Dis. 2022 8 2 126 136 10.1159/000520981 35527991
    [Google Scholar]
  34. Yang W.C. Li T. Wan Q. Zhang X. Sun L.Y. Zhang Y.R. Lai P.C. Li W. Molecular hydrogen mediates neurorestorative effects after stroke in diabetic rats: The TLR4/NF-κB inflammatory pathway. J. Neuroimmune Pharmacol. 2023 18 1-2 90 99 10.1007/s11481‑022‑10051‑w 35895245
    [Google Scholar]
  35. Dumbuya J.S. Chen X. Du J. Li S. Liang L. Xie H. Zeng Q. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model. Int. Immunopharmacol. 2023 123 110758 10.1016/j.intimp.2023.110758 37556997
    [Google Scholar]
  36. Manaenko A. Lekic T. Ma Q. Zhang J.H. Tang J. Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice. Crit. Care Med. 2013 41 5 1266 1275 10.1097/CCM.0b013e31827711c9 23388512
    [Google Scholar]
  37. Jiang B. Li Y. Dai W. Wu A. Wu H. Mao D. Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid hemorrhage. Acta Cir. Bras. 2021 36 8 e360804 10.1590/acb360804 34644772
    [Google Scholar]
  38. Chen K.D. Wang K.L. Chen C. Zhu Y.J. Tang W.W. Wang Y.J. Chen Z.P. He L.H. Chen Y.G. Zhang W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J. Gastroenterol. 2024 30 20 2709 2725 10.3748/wjg.v30.i20.2709 38855154
    [Google Scholar]
  39. Zolotarenko A.D. Zolotarenko A.D. Veziroglu A. Veziroglu T.N. Shvachko N.A. Pomytkin A.P. Gavrylyuk N.A. Schur D.V. Ramazanov T.S. Gabdullin M.T. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energy 2022 47 11 7281 7288 10.1016/j.ijhydene.2021.03.025 33746342
    [Google Scholar]
  40. Deryugina A.V. Danilova D.A. Brichkin Y.D. Taranov E.V. Nazarov E.I. Pichugin V.V. Medvedev A.P. Riazanov M.V. Fedorov S.A. Smorkalov A.Y. Makarov E.V. Molecular hydrogen exposure improves functional state of red blood cells in the early postoperative period. Med. Gas Res. 2023 13 2 59 66 10.4103/2045‑9912.356473 36204784
    [Google Scholar]
  41. Hirano S. Ichikawa Y. Sato B. Takefuji Y. Satoh F. Clinical use and treatment mechanism of molecular hydrogen in the treatment of various kidney diseases including diabetic kidney disease. Biomedicines 2023 11 10 2817 10.3390/biomedicines11102817 37893190
    [Google Scholar]
  42. Ding Y. Zhou Y. Ling P. Feng X. Luo S. Zheng X. Little P.J. Xu S. Weng J. Metformin in cardiovascular diabetology: A focused review of its impact on endothelial function. Theranostics 2021 11 19 9376 9396 10.7150/thno.64706 34646376
    [Google Scholar]
  43. Yan H. Fan M. Liu H. Xiao T. Han D. Che R. Zhang W. Zhou X. Wang J. Zhang C. Yang X. Zhang J. Li Z. Microbial hydrogen “manufactory” for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. J. Nanobiotechnology 2022 20 1 280 10.1186/s12951‑022‑01440‑7 35705974
    [Google Scholar]
  44. Li Q. Jiao Y. Yu Y. Wang G. Yu Y. Hydrogen‑rich medium alleviates high glucose-induced oxidative stress and parthanatos in rat Schwann cells in-vitro. Mol. Med. Rep. 2018 19 1 338 344 10.3892/mmr.2018.9631 30431142
    [Google Scholar]
  45. Han X.C. Ye Z.H. Hu H.J. Sun Q. Fan D.F. Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats. Med. Gas Res. 2023 13 2 72 77 10.4103/2045‑9912.345171 36204786
    [Google Scholar]
  46. Liu Z. Wang M. Zhang C. Zhou S. Ji G. Molecular functions of ceruloplasmin in metabolic disease pathology. Diabetes Metab. Syndr. Obes. 2022 15 695 711 10.2147/DMSO.S346648 35264864
    [Google Scholar]
  47. Ala M. Iacobini C. Sestrin2 signaling pathway regulates podocyte biology and protects against diabetic nephropathy. J. Diabetes Res. 2023 2023 1 15 10.1155/2023/8776878 36818747
    [Google Scholar]
  48. Chen L. Wu D. Zhou L. Ye Y. Platelet-rich plasma promotes diabetic ulcer repair through inhibition of ferroptosis. Ann. Transl. Med. 2022 10 20 1121 1121 10.21037/atm‑22‑4654 36388823
    [Google Scholar]
  49. Jung C.Y. Yoo T.H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab. J. 2022 46 2 181 197 10.4093/dmj.2021.0329 35385633
    [Google Scholar]
  50. Luyao X. Wenhai G. Jiaying D. Ya C. Yun C. Wei L. Jiean X. Wen S. Xiaodong Z. Changjun W. Hongzhi Y. Jinwen X. Yaxing Z. Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate immune signaling and pyroptosis. Int. Immunopharmacol. 2024 127 111399 10.1016/j.intimp.2023.111399 38142641
    [Google Scholar]
  51. Hassanein M. Shafi T. Assessment of glycemia in chronic kidney disease. BMC Med. 2022 20 1 117 10.1186/s12916‑022‑02316‑1 35414081
    [Google Scholar]
  52. Pajares M. Cuadrado A. Engedal N. Jirsova Z. Cahova M. The role of free radicals in autophagy regulation: Implications for ageing. Oxid. Med. Cell. Longev. 2018 2018 1 2450748 10.1155/2018/2450748 29682156
    [Google Scholar]
  53. Xu K. Zhang L. Yu N. Ren Z. Wang T. Zhang Y. Zhao X. Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: A systematic review. Stem Cell Res. Ther. 2023 14 1 74 10.1186/s13287‑023‑03324‑5 37038234
    [Google Scholar]
  54. Parekh P.J. Nayi V.R. Johnson D.A. Vinik A.I. The role of gut microflora and the cholinergic anti-inflammatory neuroendocrine system in diabetes mellitus. Front. Endocrinol. 2016 7 55 10.3389/fendo.2016.00055 27375553
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303369584241231141001
Loading
/content/journals/emiddt/10.2174/0118715303369584241231141001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test