Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Crohn’s Disease (CD) is a chronic inflammatory gastrointestinal disease. Ustekinumab (UST) has been utilized as a therapeutic option for CD patients. However, approximately 40-60% of patients exhibit an inadequate response to UST. Accumulating evidence has confirmed the involvement of oral bacteria in the development of CD. Nevertheless, the relationship between oral microbiota and the efficacy of UST therapy in CD patients has remained unexplored.

Materials and Methods

We recruited 28 healthy individuals and 53 CD patients, 47 of whom completed the entire UST therapy. Oral samples and clinical data were collected. The clinical response and clinical remission were defined based on the CDAI score. Oral samples were analyzed by 16S rRNA gene sequencing. The analysis of sequence data was performed by QIIME and R.

Results

We revealed the oral microbial difference between the Healthy Control (HC) group and the CD group. The enrichment of , , , and , and the diminution of and were observed in the CD group. Differences in oral microbiota were also identified among patients with different efficacy of UST. Compared to the response and remission groups, both the non-response and non-remission groups showed significantly higher levels of and . Predictive models for clinical response and clinical remission in UST were developed based on oral microbiota, with the Area Under the Curve (AUC) value of 0.944 and 0.930, respectively.

Conclusion

Oral microbiota was relevant to the UST efficacy in patients with CD based on the predictive model. These findings suggest that oral microbiota could serve as a non-invasive prognostic biomarker for UST treatment in CD patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303363951241209060903
2025-05-13
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/15/EMIDDT-25-15-02.html?itemId=/content/journals/emiddt/10.2174/0118715303363951241209060903&mimeType=html&fmt=ahah

References

  1. TorresJ. MehandruS. ColombelJ.F. Peyrin-BirouletL. Crohn’s disease.Lancet2017389100801741175510.1016/S0140‑6736(16)31711‑127914655
    [Google Scholar]
  2. AlatabS. SepanlouS.G. IkutaK. VahediH. BisignanoC. SafiriS. SadeghiA. NixonM.R. AbdoliA. AbolhassaniH. AlipourV. AlmadiM.A.H. Almasi-HashianiA. AnushiravaniA. ArablooJ. AtiqueS. AwasthiA. BadawiA. BaigA.A.A. BhalaN. BijaniA. BiondiA. BorzìA.M. BurkeK.E. CarvalhoF. DaryaniA. DubeyM. EftekhariA. FernandesE. FernandesJ.C. FischerF. Haj-MirzaianA. Haj-MirzaianA. HasanzadehA. HashemianM. HayS.I. HoangC.L. HousehM. IlesanmiO.S. Jafari BalalamiN. JamesS.L. KengneA.P. MalekzadehM.M. MeratS. MeretojaT.J. MestrovicT. MirrakhimovE.M. MirzaeiH. MohammadK.A. MokdadA.H. MonastaL. NegoiI. NguyenT.H. NguyenC.T. PourshamsA. PoustchiH. RabieeM. RabieeN. RamezanzadehK. RawafD.L. RawafS. RezaeiN. RobinsonS.R. RonfaniL. SaxenaS. SepehrimaneshM. ShaikhM.A. SharafiZ. SharifM. SiabaniS. SimaA.R. SinghJ.A. SoheiliA. SotoudehmaneshR. SuleriaH.A.R. TesfayB.E. TranB. TsoiD. VacanteM. WondmienehA.B. ZarghiA. ZhangZ-J. DiracM. MalekzadehR. NaghaviM. GBD 2017 Inflammatory Bowel Disease Collaborators The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet Gastroenterol. Hepatol.202051173010.1016/S2468‑1253(19)30333‑431648971
    [Google Scholar]
  3. AniwanS. ParkS.H. LoftusE.V. Epidemiology, natural history, and risk stratification of Crohn’s disease.Gastroenterol. Clin. North Am.201746346348010.1016/j.gtc.2017.05.00328838409
    [Google Scholar]
  4. GajendranM. LoganathanP. CatinellaA.P. HashashJ.G. A comprehensive review and update on Crohn’s disease.Dis. Mon.2018642205710.1016/j.disamonth.2017.07.00128826742
    [Google Scholar]
  5. RodaG. Chien NgS. KotzeP.G. ArgolloM. PanaccioneR. SpinelliA. KaserA. Peyrin-BirouletL. DaneseS. Crohn’s disease.Nat. Rev. Dis. Primers2020612210.1038/s41572‑020‑0156‑232242028
    [Google Scholar]
  6. SandsB.E. IrvingP.M. HoopsT. IzanecJ.L. GaoL.L. GasinkC. GreenspanA. AllezM. DaneseS. HanauerS.B. JairathV. KuehbacherT. LewisJ.D. LoftusE.V.Jr MihalyE. PanaccioneR. ScherlE. ShchukinaO.B. SandbornW.J. AfzaliA. AitovaL. Aldeguer i ManteX. AllezM. AltorjayI. Argüelles AriasF. ArmuzziA. AugustynM. BafuttoM. BarrioJ. BegunJ. BehrendC. BezemerG. BonnaudG. BrankovicM. ByungI.J. Calvet CalvoX. ChachuK. ChebliJ.M.F. CheonJ.H. Cichoz-LachH. ClarkL. CummingsF. DalalK. DaneseS. De BoerN. De Lourdes FerrariM. DésiletsE. DugalicP. DuvallG. FedorishinaO. FilipR. FloresC. FogelR. FonJ. FrankelM. FriedenbergK. FriesW. GalinaV. GietkaP. GoelR. HasselblattP. HerfarthH. HerszényiL. HindryckxP. HoentjenF. Horjus Talabur HorjeC. IduruS. IrvingP. IsfortR. JairathV. JonesM. KalimullinaD. KatzJ. KaurM. KhuranaS.K. KimJ.S. KimY. KleczkowskiD. KnezevicS. KnollA. KormanL.Y. KotzevI. KulyapinA. LeeK.M. LeemreisD. LeszczyszynJ. LimdiJ. LissauerJ. LoftusE. Malecka-PanasE. MarshallJ. MihályE. MilanL. MonteleoneG. NagorniA. OwczarekD. PalekarN. PanaccioneR. ParkY.S. ParkS.H. ParraR. PataiÁ. PatelK. PatelB. PershkoA. PetrovaE. Pineton de ChambrunG. RandallC. Riestra MenendezS. RitterT. RiveroM. RoblinX. RoccaR. RomatowskiJ. RydzewskaG. SaibeniS. SalzbergB. SarlesH. SaundersJ. SavarinoE.V. SerclovaZ. ShchukinaO. SiegelJ. SoofiN. SparrowM. StokesberryD. SuiterD. SvorcanP. TkachevA. TsonevN. TündeK. UlbrychJ. VanasekT. VargaM. VermeireS. Vicente LidonR. WeissM.L. WesleyE. WinsteadN. WojcikK. WypychJ. ZaltmanC. ZdenaZ. SEAVUE Study Group Ustekinumab versus adalimumab for induction and maintenance therapy in biologic- naive patients with moderately to severely active Crohn’s disease: A multicentre, randomised, double-blind, parallel-group, phase 3b trial.Lancet2022399103422200221110.1016/S0140‑6736(22)00688‑235691323
    [Google Scholar]
  7. FeaganB.G. SandbornW.J. GasinkC. JacobsteinD. LangY. FriedmanJ.R. BlankM.A. JohannsJ. GaoL.L. MiaoY. AdedokunO.J. SandsB.E. HanauerS.B. VermeireS. TarganS. GhoshS. de VilliersW.J. ColombelJ.F. TulassayZ. SeidlerU. SalzbergB.A. DesreumauxP. LeeS.D. LoftusE.V.Jr DielemanL.A. KatzS. RutgeertsP. UNITI–IM-UNITI Study Group Ustekinumab as induction and maintenance therapy for Crohn’s disease.N. Engl. J. Med.2016375201946196010.1056/NEJMoa160277327959607
    [Google Scholar]
  8. JohnsonA.M. BarskyM. AhmedW. ZullowS. GalatiJ. JairathV. NarulaN. PeeraniF. ClickB.H. CoburnE.S. DangT.T. GoldS. AgrawalM. GargR. AggarwalM. MohammadD. HalloranB. KochharG.S. TodorowskiH. Ud DinN.M. IzanecJ. TeepleA. GasinkC. MuserE. DingZ. SwaminathA. LakhaniK. HoganD. DattaS. UngaroR.C. BolandB.S. BohmM. FischerM. SagiS. AfzaliA. UllmanT. LawlorG. BaumgartD.C. ChangS. HudesmanD. LukinD. ScherlE.J. ColombelJ.F. SandsB.E. SiegelC.A. RegueiroM. SandbornW.J. BruiningD. KaneS. LoftusE.V.Jr DulaiP.S. The real-world effectiveness and safety of ustekinumab in the treatment of Crohn’s disease: Results from the success consortium.Am. J. Gastroenterol.2023118231732810.14309/ajg.000000000000204736191274
    [Google Scholar]
  9. GoncziL. SzantoK. FarkasK. MolnarT. SzamosiT. SchaferE. GolovicsP.A. BarkaiL. LontaiL. LovaszB. JuhaszM. PataiA. SarangK. VinczeA. SarlosP. FarkasA. DubravcsikZ. TothT.G. MihellerP. IliasA. LakatosP.L. Clinical efficacy, drug sustainability and serum drug levels in Crohn’s disease patients treated with ustekinumab – A prospective, multicenter cohort from Hungary.Dig. Liver Dis.202254220721310.1016/j.dld.2021.07.00834344576
    [Google Scholar]
  10. DalalR.S. NjieC. MarcusJ. GuptaS. AllegrettiJ.R. Predictors of ustekinumab failure in Crohn’s disease after dose intensification.Inflamm. Bowel Dis.20212781294130110.1093/ibd/izaa28233146703
    [Google Scholar]
  11. BarréA. ColombelJ.F. UngaroR. Review article: Predictors of response to vedolizumab and ustekinumab in inflammatory bowel disease.Aliment. Pharmacol. Ther.201847789690510.1111/apt.1455029430672
    [Google Scholar]
  12. RoblinX. DuruG. PapamichaelK. CheifetzA.S. KwiatekS. BergerA.E. BarrauM. WaeckelL. NanceyS. PaulS. Development of antibodies to ustekinumab is associated with loss of response in patients with inflammatory bowel disease.J. Clin. Med.20231210339510.3390/jcm1210339537240501
    [Google Scholar]
  13. OkudaH. HosomiS. ItaniS. KurimotoN. KobayashiY. NakataR. NishidaY. OminamiM. NadataniY. FukunagaS. OtaniK. KamataN. TanakaF. NagamiY. TairaK. OhfujiS. FujiwaraY. Pretreatment serum monocyte chemoattractant protein-1 as a predictor of long-term outcome by ustekinumab in patients with Crohn’s disease.J. Gastroenterol. Hepatol.202338691092010.1111/jgh.1615136807301
    [Google Scholar]
  14. GeversD. KugathasanS. DensonL.A. Vázquez-BaezaY. Van TreurenW. RenB. SchwagerE. KnightsD. SongS.J. YassourM. MorganX.C. KosticA.D. LuoC. GonzálezA. McDonaldD. HabermanY. WaltersT. BakerS. RoshJ. StephensM. HeymanM. MarkowitzJ. BaldassanoR. GriffithsA. SylvesterF. MackD. KimS. CrandallW. HyamsJ. HuttenhowerC. KnightR. XavierR.J. The treatment-naive microbiome in new-onset Crohn’s disease.Cell Host Microbe201415338239210.1016/j.chom.2014.02.00524629344
    [Google Scholar]
  15. DinakaranV. MandapeS.N. ShubaK. PratapS. SakhareS.S. TabatabaiM.A. SmootD.T. Farmer-DixonC.M. KesavaluL.N. AdunyahS.E. SoutherlandJ.H. GangulaP.R. Identification of specific oral and gut pathogens in full thickness colon of colitis patients: Implications for colon motility.Front. Microbiol.20199322010.3389/fmicb.2018.0322030666239
    [Google Scholar]
  16. SchmidtT.S.B. HaywardM.R. CoelhoL.P. LiS.S. CosteaP.I. VoigtA.Y. WirbelJ. MaistrenkoO.M. AlvesR.J.C. BergstenE. de BeaufortC. SobhaniI. Heintz-BuschartA. SunagawaS. ZellerG. WilmesP. BorkP. Extensive transmission of microbes along the gastrointestinal tract.eLife20198e4269310.7554/eLife.4269330747106
    [Google Scholar]
  17. FlemerB. WarrenR.D. BarrettM.P. CisekK. DasA. JefferyI.B. HurleyE. O’RiordainM. ShanahanF. O’TooleP.W. The oral microbiota in colorectal cancer is distinctive and predictive.Gut20186781454146310.1136/gutjnl‑2017‑31481428988196
    [Google Scholar]
  18. XunZ. ZhangQ. XuT. ChenN. ChenF. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles.Front. Microbiol.20189113610.3389/fmicb.2018.0113629899737
    [Google Scholar]
  19. ZhouT. XuW. WangQ. JiangC. LiH. ChaoY. SunY. AL. The effect of the “Oral-Gut” axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations.Front. Cell. Infect. Microbiol.202313113242010.3389/fcimb.2023.113242036923589
    [Google Scholar]
  20. AbdelbaryM.M.H. HattingM. BottA. DahlhausenA. KellerD. TrautweinC. ConradsG. The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease.Front. Cell. Infect. Microbiol.202212101085310.3389/fcimb.2022.101085336275026
    [Google Scholar]
  21. ReadE. CurtisM.A. NevesJ.F. The role of oral bacteria in inflammatory bowel disease.Nat. Rev. Gastroenterol. Hepatol.2021181073174210.1038/s41575‑021‑00488‑434400822
    [Google Scholar]
  22. ParkY.E. MoonH.S. YongD. SeoH. YangJ. ShinT.S. KimY.K. KimJ.R. LeeY.N. KimY.H. KimJ.S. CheonJ.H. Microbial changes in stool, saliva, serum, and urine before and after anti-TNF-α therapy in patients with inflammatory bowel diseases.Sci. Rep.2022121635910.1038/s41598‑022‑10450‑235428806
    [Google Scholar]
  23. QuastC. PruesseE. YilmazP. GerkenJ. SchweerT. YarzaP. PepliesJ. GlöcknerF.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.Nucleic Acids Res.201341Database issueD590D59623193283
    [Google Scholar]
  24. BolyenE. RideoutJ.R. DillonM.R. BokulichN.A. AbnetC.C. Al-GhalithG.A. AlexanderH. AlmE.J. ArumugamM. AsnicarF. BaiY. BisanzJ.E. BittingerK. BrejnrodA. BrislawnC.J. BrownC.T. CallahanB.J. Caraballo-RodríguezA.M. ChaseJ. CopeE.K. Da SilvaR. DienerC. DorresteinP.C. DouglasG.M. DurallD.M. DuvalletC. EdwardsonC.F. ErnstM. EstakiM. FouquierJ. GauglitzJ.M. GibbonsS.M. GibsonD.L. GonzalezA. GorlickK. GuoJ. HillmannB. HolmesS. HolsteH. HuttenhowerC. HuttleyG.A. JanssenS. JarmuschA.K. JiangL. KaehlerB.D. KangK.B. KeefeC.R. KeimP. KelleyS.T. KnightsD. KoesterI. KosciolekT. KrepsJ. LangilleM.G.I. LeeJ. LeyR. LiuY.X. LoftfieldE. LozuponeC. MaherM. MarotzC. MartinB.D. McDonaldD. McIverL.J. MelnikA.V. MetcalfJ.L. MorganS.C. MortonJ.T. NaimeyA.T. Navas-MolinaJ.A. NothiasL.F. OrchanianS.B. PearsonT. PeoplesS.L. PetrasD. PreussM.L. PruesseE. RasmussenL.B. RiversA. RobesonM.S.II RosenthalP. SegataN. ShafferM. ShifferA. SinhaR. SongS.J. SpearJ.R. SwaffordA.D. ThompsonL.R. TorresP.J. TrinhP. TripathiA. TurnbaughP.J. Ul-HasanS. van der HooftJ.J.J. VargasF. Vázquez-BaezaY. VogtmannE. von HippelM. WaltersW. WanY. WangM. WarrenJ. WeberK.C. WilliamsonC.H.D. WillisA.D. XuZ.Z. ZaneveldJ.R. ZhangY. ZhuQ. KnightR. CaporasoJ.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.Nat. Biotechnol.201937885285710.1038/s41587‑019‑0209‑931341288
    [Google Scholar]
  25. SegataN. IzardJ. WaldronL. GeversD. MiropolskyL. GarrettW.S. HuttenhowerC. Metagenomic biomarker discovery and explanation.Genome Biol.2011126R6010.1186/gb‑2011‑12‑6‑r6021702898
    [Google Scholar]
  26. LangilleM.G.I. ZaneveldJ. CaporasoJ.G. McDonaldD. KnightsD. ReyesJ.A. ClementeJ.C. BurkepileD.E. Vega ThurberR.L. KnightR. BeikoR.G. HuttenhowerC. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.Nat. Biotechnol.201331981482110.1038/nbt.267623975157
    [Google Scholar]
  27. EngevikM.A. DanhofH.A. RuanW. EngevikA.C. Chang-GrahamA.L. EngevikK.A. ShiZ. ZhaoY. BrandC.K. KrystofiakE.S. VenableS. LiuX. HirschiK.D. HyserJ.M. SpinlerJ.K. BrittonR.A. VersalovicJ. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation.MBio2021122e02706-2010.1128/mBio.02706‑2033653893
    [Google Scholar]
  28. KitamotoS. Nagao-KitamotoH. JiaoY. GillillandM.G.III HayashiA. ImaiJ. SugiharaK. MiyoshiM. BrazilJ.C. KuffaP. HillB.D. RizviS.M. WenF. BishuS. InoharaN. EatonK.A. NusratA. LeiY.L. GiannobileW.V. KamadaN. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis.Cell20201822447462.e1410.1016/j.cell.2020.05.04832758418
    [Google Scholar]
  29. Rojas-TapiasD.F. BrownE.M. TempleE.R. OnyekabaM.A. MohamedA.M.T. DuncanK. SchirmerM. WalkerR.L. MayassiT. PierceK.A. Ávila-PachecoJ. ClishC.B. VlamakisH. XavierR.J. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine.Nat. Microbiol.20227101673168510.1038/s41564‑022‑01224‑736138166
    [Google Scholar]
  30. KitamotoS. KamadaN. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms.Periodontol. 2000202289114215310.1111/prd.1242435244953
    [Google Scholar]
  31. ParkS.Y. HwangB.O. LimM. OkS.H. LeeS.K. ChunK.S. ParkK.K. HuY. ChungW.Y. SongN.Y. Oral–gut microbiome axis in gastrointestinal disease and cancer.Cancers (Basel)2021139212410.3390/cancers1309212433924899
    [Google Scholar]
  32. ImaiJ. IchikawaH. KitamotoS. GolobJ.L. KanekoM. NagataJ. TakahashiM. GillillandM.G.III TanakaR. Nagao-KitamotoH. HayashiA. SugiharaK. BishuS. TsudaS. ItoH. KojimaS. KarakidaK. MatsushimaM. SuzukiT. HozumiK. WatanabeN. GiannobileW.V. ShiraiT. SuzukiH. KamadaN. A potential pathogenic association between periodontal disease and Crohn’s disease.JCI Insight2021623e14854310.1172/jci.insight.14854334710061
    [Google Scholar]
  33. Lira-JuniorR. FigueredoC.M. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions?World J. Gastroenterol.201622357963797210.3748/wjg.v22.i35.796327672291
    [Google Scholar]
  34. AtarashiK. SudaW. LuoC. KawaguchiT. MotooI. NarushimaS. KiguchiY. YasumaK. WatanabeE. TanoueT. ThaissC.A. SatoM. ToyookaK. SaidH.S. YamagamiH. RiceS.A. GeversD. JohnsonR.C. SegreJ.A. ChenK. KollsJ.K. ElinavE. MoritaH. XavierR.J. HattoriM. HondaK. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation.Science2017358636135936510.1126/science.aan452629051379
    [Google Scholar]
  35. KitamotoS. Nagao-KitamotoH. HeinR. SchmidtT.M. KamadaN. The bacterial connection between the oral cavity and the gut diseases.J. Dent. Res.20209991021102910.1177/002203452092463332464078
    [Google Scholar]
  36. LockhartP.B. BrennanM.T. SasserH.C. FoxP.C. PasterB.J. Bahrani-MougeotF.K. Bacteremia associated with toothbrushing and dental extraction.Circulation2008117243118312510.1161/CIRCULATIONAHA.107.75852418541739
    [Google Scholar]
  37. HajishengallisG. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications.Periodontol.202289191810.1111/prd.1243035244969
    [Google Scholar]
  38. SchirmerM. DensonL. VlamakisH. FranzosaE.A. ThomasS. GotmanN.M. RufoP. BakerS.S. SauerC. MarkowitzJ. PfefferkornM. Oliva-HemkerM. RoshJ. OtleyA. BoyleB. MackD. BaldassanoR. KeljoD. LeLeikoN. HeymanM. GriffithsA. PatelA.S. NoeJ. KugathasanS. WaltersT. HuttenhowerC. HyamsJ. XavierR.J. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course.Cell Host Microbe2018244600610.e410.1016/j.chom.2018.09.00930308161
    [Google Scholar]
  39. MachielsK. Pozuelo del RíoM. Martinez-De la TorreA. XieZ. Pascal AndreuV. SabinoJ. SantiagoA. CamposD. WolthuisA. D’HooreA. De HertoghG. FerranteM. ManichanhC. VermeireS. Early postoperative endoscopic recurrence in Crohn’s disease is characterised by distinct microbiota recolonisation.J. Crohn’s Colitis202014111535154610.1093/ecco‑jcc/jjaa08132333762
    [Google Scholar]
  40. KolenbranderP.E. PalmerR.J.Jr PeriasamyS. JakubovicsN.S. Oral multispecies biofilm development and the key role of cell–cell distance.Nat. Rev. Microbiol.20108747148010.1038/nrmicro238120514044
    [Google Scholar]
  41. WarrenR.L. FreemanD.J. PleasanceS. WatsonP. MooreR.A. CochraneK. Allen-VercoeE. HoltR.A. Co-occurrence of anaerobic bacteria in colorectal carcinomas.Microbiome2013111610.1186/2049‑2618‑1‑1624450771
    [Google Scholar]
  42. PascalV. PozueloM. BorruelN. CasellasF. CamposD. SantiagoA. MartinezX. VarelaE. SarrabayrouseG. MachielsK. VermeireS. SokolH. GuarnerF. ManichanhC. A microbial signature for Crohn’s disease.Gut201766581382210.1136/gutjnl‑2016‑31323528179361
    [Google Scholar]
  43. MengQ. GaoQ. MehrazarinS. TangwanichgapongK. WangY. HuangY. PanY. RobinsonS. LiuZ. ZangiabadiA. LuxR. PapapanouP.N. GuoX.E. WangH. BerchowitzL.E. HanY.W. Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity.EMBO Rep.2021227e5289110.15252/embr.20215289134184813
    [Google Scholar]
  44. EribeE.R.K. OlsenI. Leptotrichia species in human infections II.J. Oral Microbiol.201791136884810.1080/20002297.2017.136884829081911
    [Google Scholar]
  45. SchrimsherJ.M. McGuirkJ.P. HinthornD.R. Leptotrichia trevisanii sepsis after bone marrow transplantation.Emerg. Infect. Dis.201319101690169110.3201/eid1910.12104824047561
    [Google Scholar]
  46. EribeE.R.K. OlsenI. Leptotrichia species in human infections.Anaerobe200814313113710.1016/j.anaerobe.2008.04.00418539056
    [Google Scholar]
  47. KimC.H. LeeY.U. KimK.H. KangS. KangG.H. ChuH. LeeS. Comparison of metabolites and gut microbes between patients with ulcerative colitis and healthy individuals for an integrative medicine approach to ulcerative Colitis—A pilot observational clinical study (STROBE Compliant).Diagnostics (Basel)2022128196910.3390/diagnostics1208196936010319
    [Google Scholar]
  48. RanganathN. ShirleyJ.D. ChallenerD.W. StevensR.W. KindD.R. CombaI.Y. PatelR. SchuetzA.N. ShahA.S. Leptotrichia bacteremia: 10-year retrospective clinical analysis and antimicrobial susceptibility profiles.J. Clin. Microbiol.2023612e01733-2210.1128/jcm.01733‑2236715514
    [Google Scholar]
  49. LangfeldtD. NeulingerS.C. StieschM. StumppN. BangC. SchmitzR.A. EberhardJ. Health- and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation.FEMS Microbiol. Lett.2014360213714310.1111/1574‑6968.1259625212593
    [Google Scholar]
  50. FanX. AlekseyenkoA.V. WuJ. PetersB.A. JacobsE.J. GapsturS.M. PurdueM.P. AbnetC.C. Stolzenberg-SolomonR. MillerG. RavelJ. HayesR.B. AhnJ. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study.Gut201867112012710.1136/gutjnl‑2016‑31258027742762
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303363951241209060903
Loading
/content/journals/emiddt/10.2174/0118715303363951241209060903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test