Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Objective

This study aimed to uncover biomarkers associated with fibroblasts to diagnose ulcerative colitis (UC) and predict sensitivity to TNFα inhibitors.

Methods

We identified fibrosis-related genes by analyzing eight bulk RNA and one single-cell RNA sequencing dataset from UC patients. Three machine learning algorithms were employed to identify common significant genes. We utilized five machine learning models, namely Random Forest (RF), Support Vector Machine (SVM), Xgboost, Multilayer Perceptron (MLP), and Logistic Regression, to develop diagnostic models for UC. Following hyperparameter tweaking using grid search, we evaluated Matthew’s Correlation Coefficient (MCC) of each model on the validation set. Finally, we identified five hub genes in UC patients and evaluated their response to infliximab or golimumab.

Results

We identified 23 genes associated with fibroblasts. Further analysis using three ML models revealed BIRC3, IFITM2, ANXA1, ISG20, and MSN as critical fibroblast genes. Following hyperparameter adjustment, the SVM model exhibited the most favorable characteristics in the validation set, achieving an MCC of 0.7. ANXA1 contributed the most to the model that predicts UC. The optimal model was implemented on the website. Among UC patients receiving TNFα inhibitor treatment, the ineffective group showed considerably increased expression of the five critical genes than the responsive group.

Conclusion

BIRC3, IFITM2, ANXA1, ISG20, and MSN may serve as potential diagnostic biomarkers in UC. Through the interaction between characteristic biomarkers and immune infiltrating cells, the immune response mediated by these characteristic biomarkers plays a crucial role in the occurrence and development of UC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303332155240912050838
2024-10-18
2025-09-24
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/9/EMIDDT-25-9-04.html?itemId=/content/journals/emiddt/10.2174/0118715303332155240912050838&mimeType=html&fmt=ahah

References

  1. YanL. GuC. GaoS. WeiB. Epigenetic regulation and therapeutic strategies in ulcerative colitis.Front. Genet.202314130288610.3389/fgene.2023.130288638169708
    [Google Scholar]
  2. EfremovaI. MaslennikovR. PoluektovaE. VasilievaE. ZharikovY. SuslovA. LetyaginaY. KozlovE. LevshinaA. IvashkinV. Epidemiology of small intestinal bacterial overgrowth.World J. Gastroenterol.202329223400342110.3748/wjg.v29.i22.340037389240
    [Google Scholar]
  3. BielC. FaberK.N. BankR.A. OlingaP. Matrix metalloproteinases in intestinal fibrosis.J. Crohn’s Colitis2023183jjad17810.1093/ecco‑jcc/jjad17837878770
    [Google Scholar]
  4. JunJ.I. LauL.F. Resolution of organ fibrosis.J. Clin. Invest.201812819710710.1172/JCI9356329293097
    [Google Scholar]
  5. ParkJ.M. KimJ. LeeY.J. BaeS.U. LeeH.W. Inflammatory bowel disease–associated intestinal fibrosis.J. Pathol. Transl. Med.2023571606610.4132/jptm.2022.11.0236623814
    [Google Scholar]
  6. DerkaczA. OlczykP. OlczykK. Komosinska-VassevK. The role of extracellular matrix components in inflammatory bowel diseases.J. Clin. Med.2021105112210.3390/jcm1005112233800267
    [Google Scholar]
  7. GordonI.O. AbushammaS. KurowskiJ.A. HolubarS.D. KouL. LyuR. RiederF. Paediatric ulcerative colitis is a fibrotic disease and is linked with chronicity of inflammation.J. Crohn’s Colitis202216580482110.1093/ecco‑jcc/jjab21634849664
    [Google Scholar]
  8. YangY. HuaY. ZhengH. JiaR. YeZ. SuG. GuY. ZhanK. TangK. QiS. WuH. QinS. HuangS. Biomarkers prediction and immune landscape in ulcerative colitis: Findings based on bioinformatics and machine learning.Comput. Biol. Med.202416810777810.1016/j.compbiomed.2023.10777838070204
    [Google Scholar]
  9. NiS. LiuY. ZhongJ. ShenY. Identification and immunoinfiltration analysis of key genes in ulcerative colitis using WGCNA.PeerJ202412e1692110.7717/peerj.1692138426148
    [Google Scholar]
  10. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.3638868713
    [Google Scholar]
  11. Garrido-TrigoA. CorralizaA.M. VenyM. DottiI. Melón-ArdanazE. RillA. CrowellH.L. CorbíÁ. GudiñoV. EstellerM. Álvarez-TeubelI. AguilarD. MasamuntM.C. KillingbeckE. KimY. LeonM. VisvanathanS. MarcheseD. CaratùG. Martin-CardonaA. EsteveM. OrdásI. PanésJ. RicartE. MereuE. HeynH. SalasA. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease.Nat. Commun.2023141450610.1038/s41467‑023‑40156‑637495570
    [Google Scholar]
  12. ZhaoS YeB ChiH Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer's disease using singlecell sequencing.Heliyon202397e1745410.1016/j.heliyon.2023.e17454
    [Google Scholar]
  13. LeeC. KimH. Machine learning-based predictive modeling of depression in hypertensive populations.PLoS One2022177e027233010.1371/journal.pone.027233035905087
    [Google Scholar]
  14. WangZ. ZhangL. HuangT. YangR. ChengH. WangH. YinH. LyuJ. Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.Heart Lung202358748110.1016/j.hrtlng.2022.11.00536423504
    [Google Scholar]
  15. ZhangJ. WuX. WeiS. LiuC. WangX. DongW. Identified potential biomarkers may predict primary nonresponse to infliximab in patients with ulcerative colitis.Autoimmunity202255853854810.1080/08916934.2022.210380335876170
    [Google Scholar]
  16. DingH. LiuX.C. Jian-MingX. QiaoM. Identification of crucial genes and related transcription factors in ulcerative colitis.Ann. Clin. Lab. Sci.202151224525433941565
    [Google Scholar]
  17. IppolitoC. ColucciR. SegnaniC. ErredeM. GirolamoF. VirgintinoD. DolfiA. TirottaE. BucciantiP. Di CandioG. CampaniD. CastagnaM. BassottiG. VillanacciV. BlandizziC. BernardiniN. Fibrotic and vascular remodelling of colonic wall in patients with active ulcerative colitis.J. Crohn’s Colitis201610101194120410.1093/ecco‑jcc/jjw07626995183
    [Google Scholar]
  18. GordonI.O. AgrawalN. WillisE. GoldblumJ.R. LopezR. AllendeD. LiuX. PatilD.Y. YerianL. El-KhiderF. FiocchiC. RiederF. Fibrosis in ulcerative colitis is directly linked to severity and chronicity of mucosal inflammation.Aliment. Pharmacol. Ther.201847792293910.1111/apt.1452629411405
    [Google Scholar]
  19. GundersenM.D. GollR. FentonC.G. AnderssenE. SørbyeS.W. FlorholmenJ.R. PaulssenR.H. Fibrosis mediators in the colonic mucosa of acute and healed ulcerative colitis.Clin. Transl. Gastroenterol.20191010e0008210.14309/ctg.000000000000008231584460
    [Google Scholar]
  20. FlowerR.J. Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids.Br. J. Pharmacol.19889449871015
    [Google Scholar]
  21. FlowerR.J. BlackwellG.J. Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation.Nature1979278570345645910.1038/278456a0450050
    [Google Scholar]
  22. AraújoT.G. MotaS.T.S. FerreiraH.S.V. RibeiroM.A. GoulartL.R. VecchiL. Annexin A1 as a regulator of immune response in cancer.Cells2021109224510.3390/cells1009224534571894
    [Google Scholar]
  23. JamesJ.P. NielsenB.S. ChristensenI.J. LangholzE. MalhamM. PoulsenT.S. HolmstrømK. RiisL.B. HøgdallE. Mucosal expression of PI3, ANXA1, and VDR discriminates Crohn’s disease from ulcerative colitis.Sci. Rep.20231311842110.1038/s41598‑023‑45569‑337891214
    [Google Scholar]
  24. SenaA.A. PedrottiL.P. BarriosB.E. CejasH. BalderramoD. DillerA. CorreaS.G. Lack of TNFRI signaling enhances annexin A1 biological activity in intestinal inflammation.Biochem. Pharmacol.201598342243110.1016/j.bcp.2015.09.00926386311
    [Google Scholar]
  25. LeoniG. NeumannP.A. KamalyN. QuirosM. NishioH. JonesH.R. SumaginR. HilgarthR.S. AlamA. FredmanG. ArgyrisI. RijckenE. KustersD. ReutelingspergerC. PerrettiM. ParkosC.A. FarokhzadO.C. NeishA.S. NusratA. Annexin A1–containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair.J. Clin. Invest.201512531215122710.1172/JCI7669325664854
    [Google Scholar]
  26. HuangP. ZhouY. LiuZ. ZhangP. Interaction between ANXA1 and GATA-3 in immunosuppression of CD4+ T Cells.Mediators Inflamm.201620161910.1155/2016/170105927833268
    [Google Scholar]
  27. MorrisseyP.J. CharrierK. BraddyS. LiggittD. WatsonJ.D. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells.J. Exp. Med.1993178123724410.1084/jem.178.1.2378100269
    [Google Scholar]
  28. LiangZ. LiX. Identification of ANXA1 as a potential prognostic biomarker and correlating with immune infiltrates in colorectal cancer.Autoimmunity2021542768710.1080/08916934.2021.188714833596760
    [Google Scholar]
  29. D’AcquistoF. PaschalidisN. RazaK. BuckleyC.D. FlowerR.J. PerrettiM. Glucocorticoid treatment inhibits annexin-1 expression in rheumatoid arthritis CD4+ T cells.Rheumatology (Oxford)200847563663910.1093/rheumatology/ken06218390587
    [Google Scholar]
  30. TomitaT. KanaiT. FujiiT. NemotoY. OkamotoR. TsuchiyaK. TotsukaT. SakamotoN. WatanabeM. Continuous generation of colitogenic CD4+ T cells in persistent colitis.Eur. J. Immunol.20083851264127410.1002/eji.20073774518412157
    [Google Scholar]
  31. CrawfordN. StottK.J. SesslerT. McCannC. McDaidW. LeesA. LatimerC. FoxJ.P. MunckJ.M. SmythT. ShahA. MartinsV. LawlerM. DunneP.D. KerrE.M. McDadeS.S. CoyleV.M. LongleyD.B. Clinical positioning of the iap antagonist tolinapant (Astx660) in colorectal cancer.Mol. Cancer Ther.20212091627163910.1158/1535‑7163.MCT‑20‑105034389694
    [Google Scholar]
  32. GrabingerT. BodeK.J. DemgenskiJ. SeitzC. DelgadoM.E. KostadinovaF. ReinholdC. EtemadiN. WilhelmS. SchweinlinM. HänggiK. KnopJ. HauckC. WallesH. SilkeJ. WajantH. NachburU. W Wei-LynnW. BrunnerT. Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells.Gastroenterology2017152486787910.1053/j.gastro.2016.11.01927889570
    [Google Scholar]
  33. GeL. WangT. ShiD. GengY. FanH. ZhangR. ZhangY. ZhaoJ. LiS. LiY. ShiH. SongG. PanJ. WangL. HanJ. ATF6α contributes to rheumatoid arthritis by inducing inflammatory cytokine production and apoptosis resistance.Front. Immunol.20221396570810.3389/fimmu.2022.96570836300114
    [Google Scholar]
  34. Rath-DeschnerB. NogueiraA.V.B. MemmertS. NokhbehsaimM. Augusto CirelliJ. EickS. MiosgeN. KirschneckC. KestingM. DeschnerJ. JägerA. DamanakiA. Regulation of anti-apoptotic SOD2 and BIRC3 in periodontal cells and tissues.Int. J. Mol. Sci.202122259110.3390/ijms2202059133435582
    [Google Scholar]
  35. BrownJ. BothmaH. VealeR. WillemP. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.World J. Gastroenterol.201117242909292310.3748/wjg.v17.i24.290921734802
    [Google Scholar]
  36. ZhaoX. LiJ. WinklerC.A. AnP. GuoJ.T. IFITM genes, variants, and their roles in the control and pathogenesis of viral infections.Front. Microbiol.20199322810.3389/fmicb.2018.0322830687247
    [Google Scholar]
  37. SchelleL. AbrantesJ. BaldaufH.M. EstevesP.J. Evolution of primate interferon-induced transmembrane proteins (IFITMs): A story of gain and loss with a differentiation into a canonical cluster and IFITM retrogenes.Front. Microbiol.202314121368510.3389/fmicb.2023.121368537577422
    [Google Scholar]
  38. ZhangY. LiX. ZhangS. LiJ. LiuM. LuY. HanJ. Role of IFITM2 in osteogenic differentiation of C3H10T1/2 mesenchymal stem cells.Intractable Rare Dis. Res.2024131425010.5582/irdr.2023.0110838404731
    [Google Scholar]
  39. ChenX. LianD. ZengH. Single-cell profiling of peripheral blood and muscle cells reveals inflammatory features of juvenile dermatomyositis.Front. Cell Dev. Biol.202311116601710.3389/fcell.2023.116601737152289
    [Google Scholar]
  40. RajkumarT. SabithaK. VijayalakshmiN. ShirleyS. BoseM.V. GopalG. SelvaluxmyG. Identification and validation of genes involved in cervical tumourigenesis.BMC Cancer20111118010.1186/1471‑2407‑11‑8021338529
    [Google Scholar]
  41. GaoM. LinY. LiuX. LiY. ZhangC. WangZ. WangZ. WangY. GuoZ. ISG20 promotes local tumor immunity and contributes to poor survival in human glioma.OncoImmunology201982e153403810.1080/2162402X.2018.153403830713788
    [Google Scholar]
  42. XuT. RuanH. GaoS. LiuJ. LiuY. SongZ. CaoQ. WangK. BaoL. LiuD. TongJ. ShiJ. LiangH. YangH. ChenK. ZhangX. ISG20 serves as a potential biomarker and drives tumor progression in clear cell renal cell carcinoma.Aging (Albany NY)20201221808182710.18632/aging.10271432003757
    [Google Scholar]
  43. KawaguchiK. YoshidaS. HatanoR. AsanoS. Pathophysiological roles of ezrin/radixin/moesin proteins.Biol. Pharm. Bull.201740438139010.1248/bpb.b16‑0101128381792
    [Google Scholar]
  44. KarvarS. Ansa-AddoE.A. SudaJ. SinghS. ZhuL. LiZ. RockeyD.C. Moesin, an ezrin/radixin/moesin family member, regulates hepatic fibrosis.Hepatology20207231073108410.1002/hep.3107831860744
    [Google Scholar]
  45. TheissA.L. SimmonsJ.G. JobinC. LundP.K. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2.J. Biol. Chem.200528043360993610910.1074/jbc.M50529120016141211
    [Google Scholar]
  46. PastorelliL. GargR.R. HoangS.B. SpinaL. MattioliB. ScarpaM. FiocchiC. VecchiM. PizarroT.T. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis.Proc. Natl. Acad. Sci. USA2010107178017802210.1073/pnas.091267810720385815
    [Google Scholar]
  47. HodzicZ. SchillE.M. BolockA.M. GoodM. IL-33 and the intestine: The good, the bad, and the inflammatory.Cytokine201710011010.1016/j.cyto.2017.06.01728687373
    [Google Scholar]
  48. SedhomM.A.K. PicheryM. MurdochJ.R. FolignéB. OrtegaN. NormandS. MertzK. SanmugalingamD. BraultL. GrandjeanT. LefrancaisE. FallonP.G. QuesniauxV. Peyrin-BirouletL. CathomasG. JuntT. ChamaillardM. GirardJ.P. RyffelB. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice.Gut201362121714172310.1136/gutjnl‑2011‑30178523172891
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303332155240912050838
Loading
/content/journals/emiddt/10.2174/0118715303332155240912050838
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test