Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Senna leaf is a commonly used medication for treating constipation, and long-term use can cause damage to the intestinal mucosa and lead to drug dependence. But the exact mechanism remains unclear.

Objective

Using non-targeted metabolomics technology to study the mechanism of senna leaf ethanol extract (EESL) inducing inflammation and oxidative stress in mice and causing side effects.

Methods

EESL was administered to mice by gavage to detect inflammation and oxidative stress-related factors in mice, and the EESL components and differential metabolites in mouse plasma were analyzed using non-targeted metabolome techniques.

Results

23 anthraquinone compounds were identified in the EESL, including sennoside and their derivatives. Administration of EESL to mice resulted in a significant increase in pro-inflammatory factors, IL-1β, and IL-6 in the plasma, while the levels of IgA significantly decreased. The levels of oxidative stress significantly increased, and the intestinal mucosal integrity was impaired. 21 endogenous in plasma metabolites were identified as differential metabolites related with taurine and taurine metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, tryptophan metabolism, and sphingolipid metabolism. These metabolic pathways are related to oxidative stress and inflammation.

Conclusion

Senna leaf can inhibit the expression of tight junction proteins in the intestinal mucosa and disrupt intestinal mucosal barrier integrity, exacerbating oxidative stress and inflammation induced by bacterial LPS entering the bloodstream. In addition, the impact of Senna leaf on tryptophan metabolism may be linked to the occurrence of drug dependence.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303325372241014152811
2024-10-24
2025-09-24
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/9/EMIDDT-25-9-03.html?itemId=/content/journals/emiddt/10.2174/0118715303325372241014152811&mimeType=html&fmt=ahah

References

  1. WuC. ZhengK. MengT. WangJ. Effects of endovascular stent-assisted effects of various frequencies of abdominal naprapathy on changes in gastrointestinal mucosal cells in spleen-deficient rabbits.Med. Sci. Monit.202026e92103910.12659/MSM.92103932394977
    [Google Scholar]
  2. RaoS.S.C. BrennerD.M. Efficacy and safety of over-the-counter therapies for chronic constipation: An updated systematic review.Am. J. Gastroenterol.202111661156118110.14309/ajg.000000000000122233767108
    [Google Scholar]
  3. ZhuJ. LiX. DengN. PengX. TanZ. Diarrhea with deficiency kidney-yang syndrome caused by adenine combined with Folium senna was associated with gut mucosal microbiota.Front. Microbiol.202213100760910.3389/fmicb.2022.100760936304943
    [Google Scholar]
  4. Kiliś-PstrusińskaK. Wiela-HojeńskaA. Nephrotoxicity of herbal products in Europe-A review of an underestimated problem.Int. J. Mol. Sci.2021228413210.3390/ijms2208413233923686
    [Google Scholar]
  5. CoskunY. YukselI. Polyethylene glycol versus split high-dose senna for bowel preparation: A comparative prospective randomized study.J. Gastroenterol. Hepatol.202035111923192910.1111/jgh.1510132424868
    [Google Scholar]
  6. KiambiJ. MwitiC. JN NgeranwaJ. Piero NgugiM. Anti-inflammatory potential of dichloromethane leaf extracts of Eucalyptus globulus (Labill) and Senna didymobotrya (Fresenius) in mice.Afr. Health Sci.202121139740910.4314/ahs.v21i1.5034394322
    [Google Scholar]
  7. Arana-ArgáezV.E. DomínguezF. MorenoD.A. Isiordia-EspinozaM.A. Lara-RiegosJ.C. Ceballos-GóngoraE. Zapata-MoralesJ.R. Franco-De La TorreL. Sánchez-EnríquezS. Alonso-CastroA.J. Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis.Inflammopharmacology202028254154910.1007/s10787‑019‑00657‑731679123
    [Google Scholar]
  8. NadeauS.E. LawhernR.A. Management of chronic non-cancer pain: A framework.Pain Manag. (Lond.)202212675177710.2217/pmt‑2022‑001735642546
    [Google Scholar]
  9. OladejiO.S. AdelowoF.E. OluyoriA.P. BankoleD.T. Ethnobotanical description and biological activities of Senna alata.Evid. Based Compl. Alternat. Med.20202020258025910.1155/2020/2580259
    [Google Scholar]
  10. TowanouR. Phytochemical screening, antioxidant activity, and acute toxicity evaluation of Senna italica extract used in traditional medicine.J. Toxicol.20232023640541510.1155/2023/6405415
    [Google Scholar]
  11. CastroD.T.H. LeiteD.F. Da Silva BaldiviaD. Dos SantosH.F. BalogunS.O. Da SilvaD.B. CarolloC.A. De Picoli SouzaK. Dos SantosE.L. Structural characterization and anticancer activity of a new anthraquinone from Senna velutina (Fabaceae).Pharmaceuticals (Basel)202316795110.3390/ph1607095137513863
    [Google Scholar]
  12. RoyS. KunduS. LyndemL.M. Senna leaf extracts induced Ca+2 homeostasis in a zoonotic tapeworm Hymenolepis diminuta.Pharm. Biol.201654102353235710.3109/13880209.2016.113960026878612
    [Google Scholar]
  13. LiX. PengX. QiaoB. PengM. DengN. YuR. TanZ. Gut-kidney impairment process of adenine ombined with folium sennae-induced diarrhea: association with interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and acetic acid, inflammation, and kidney function.Cells20221120326110.3390/cells1120326136291135
    [Google Scholar]
  14. CandelliM. FranzaL. PignataroG. OjettiV. CovinoM. PiccioniA. GasbarriniA. FranceschiF. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases.Int. J. Mol. Sci.20212212624210.3390/ijms2212624234200555
    [Google Scholar]
  15. BuriniR.C. AndersonE. DurstineJ.L. CarsonJ.A. Inflammation, physical activity, and chronic disease: An evolutionary perspective.Sports Med. Health Sci.2020211610.1016/j.smhs.2020.03.00435783338
    [Google Scholar]
  16. GuarizeL. Da CostaJ.C. DutraL.B. MendesR.F. LimaI.V.A. ScioE. Anti-inflammatory, laxative and intestinal motility effects of Senna macranthera leaves.Nat. Prod. Res.201226433134310.1080/1478641100375426421432718
    [Google Scholar]
  17. SalgueroM. Al-ObaideM. SinghR. SiepmannT. VasylyevaT. Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type-2 diabetic patients with chronic kidney disease.Exp. Ther. Med.20191853461346910.3892/etm.2019.794331602221
    [Google Scholar]
  18. LiJ. SunY. YangN. ZhangH. HuY. WangH. ZhangR. GeM. Protective effects of maternal administration of total saponins of Codonopsis pilosula in the mice offspring following diarrhea: role of immune function, antioxidant function, and intestinal inflammatory injury.Environ. Sci. Pollut. Res. Int.2023305311390311391610.1007/s11356‑023‑30281‑637858017
    [Google Scholar]
  19. ZhaoT. WangZ. LiuZ. XuY. Pivotal role of the interaction between herbal medicines and gut microbiota on disease treatment.Curr. Drug Targets202122333634610.2174/138945012166620032415153032208116
    [Google Scholar]
  20. Paramita PP. Sajeli BA. Ameer BS. ArayaH. FujimotoY. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies.Int. Immunopharmacol.202311710994010.1016/j.intimp.2023.10994037012863
    [Google Scholar]
  21. WangJ. ZhangC. GuoC. LiX. Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora.Int. J. Mol. Sci.20192022575110.3390/ijms2022575131731793
    [Google Scholar]
  22. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  23. MohammadS. ThiemermannC. Role of metabolic endotoxemia in systemic inflammation and potential interventions.Front. Immunol.20211159415010.3389/fimmu.2020.59415033505393
    [Google Scholar]
  24. GesualdoL. Di LeoV. CoppoR. The mucosal immune system and IgA nephropathy.Semin. Immunopathol.202143565766810.1007/s00281‑021‑00871‑y34642783
    [Google Scholar]
  25. BaiY. HuangF. ZhangR. MaQ. DongL. SuD. ChiJ. ZhangM. Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis.Food Funct.20201132738274810.1039/C9FO02780G32175536
    [Google Scholar]
  26. LiY. JinL. ChenT. The effects of secretory IgA in the mucosal immune system.Biomed. Res. Int.2020203205710.1155/2020/2032057
    [Google Scholar]
  27. LiS. LiangT. ZhangY. HuangK. YangS. LvH. ChenY. ZhangC. GuanX. Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties.Free Radic. Biol. Med.202117133234410.1016/j.freeradbiomed.2021.05.02834029693
    [Google Scholar]
  28. ZhangY. LiY. FengQ. ShaoM. YuanF. LiuF. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae.Chemosphere202024812600910.1016/j.chemosphere.2020.12600932000039
    [Google Scholar]
  29. Di MeoS. VendittiP. Evolution of the knowledge of free radicals and other oxidants.Oxid. Med. Cell Longev.20201982917610.1155/2020/9829176
    [Google Scholar]
  30. GhonimiN.A.M. ElsharkawiK.A. KhyalD.S.M. AbdelghaniA.A. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics.Mult. Scler. Relat. Disord.20215110294110.1016/j.msard.2021.10294133895606
    [Google Scholar]
  31. AlizadehM. KheirouriS. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: a comprehensive meta-analysis of randomized controlled trials.Biomedicine (Taipei)2019942310.1051/bmdcn/201909042331724938
    [Google Scholar]
  32. Cecerska-HeryćE. SurowskaO. HeryćR. SerwinN. Napiontek-BalińskaS. DołęgowskaB. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients – A review.Clin. Biochem.2021931810.1016/j.clinbiochem.2021.03.00833773993
    [Google Scholar]
  33. ZengZ. HeX. LiC. LinS. ChenH. LiuL. FengX. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease.Biomaterials202127112075310.1016/j.biomaterials.2021.12075333725585
    [Google Scholar]
  34. Krzystek-KorpackaM. KempińskiR. BromkeM.A. NeubauerK. Oxidative stress markers in inflammatory bowel diseases: systematic review.Diagnostics (Basel)202010860110.3390/diagnostics1008060132824619
    [Google Scholar]
  35. DjuricicI. CalderP.C. Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: an update for 2021.Nutrients2021137242110.3390/nu1307242134371930
    [Google Scholar]
  36. FanelliG. BelardoA. SavinoR. RinalducciS. ZollaL. Testosterone replacement therapy in insulin-sensitive hypogonadal men restores phosphatidylcholine levels by regulation of arachidonic acid metabolism.J. Cell. Mol. Med.202024148266826910.1111/jcmm.1539232491269
    [Google Scholar]
  37. SiddiquiM.K. SmithG. St JeanP. DawedA.Y. BellS. Soto-PedreE. KennedyG. CarrF. WallentinL. WhiteH. MacpheeC.H. WaterworthD. PalmerC.N.A. Diabetes status modifies the long-term effect of lipoprotein-associated phospholipase A2 on major coronary events.Diabetologia202265110111210.1007/s00125‑021‑05574‑534562103
    [Google Scholar]
  38. MoreiraV. LeiguezE. JanovitsP.M. Maia-MarquesR. FernandesC.M. TeixeiraC. Inflammatory effects of bothrops phospholipases A(2): mechanisms involved in biosynthesis of lipid mediators and lipid accumulation.Toxins (Basel)2021131286810.3390/toxins1312086834941706
    [Google Scholar]
  39. SpisniE. PetrocelliG. ImbesiV. SpigarelliR. AzzinnariD. Donati SartiM. CampieriM. ValeriiM.C. Antioxidant, anti-inflammatory, and microbial-modulating activities of essential oils: implications in colonic pathophysiology.Int. J. Mol. Sci.20202111415210.3390/ijms2111415232532055
    [Google Scholar]
  40. SztolsztenerK. ChabowskiA. Harasim-SymborE. BielawiecP. Konstantynowicz-NowickaK. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development.Biomolecules2020108113310.3390/biom1008113332751983
    [Google Scholar]
  41. AmaralE.P. VinhaesC.L. Oliveira-De-SouzaD. NogueiraB. AkramiK.M. AndradeB.B. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis.Antioxid. Redox Signal.202134647148510.1089/ars.2020.812432559410
    [Google Scholar]
  42. HeJ. ZhangP. ShenL. NiuL. TanY. ChenL. ZhaoY. BaiL. HaoX. LiX. ZhangS. ZhuL. Short-chain fatty acids and their association with signalling pathways in inflammation, Glucose and lipid metabolism.Int. J. Mol. Sci.20202117635610.3390/ijms2117635632887215
    [Google Scholar]
  43. SuzukiR. MishimaM. NaganeM. MizugakiH. SuzukiT. KomuroM. ShimizuT. FukuyamaT. TakedaS. OgataM. MiyamotoT. AiharaN. KamiieJ. KamisukiS. YokaryoH. YamashitaT. SatohT. The novel sustained 3-hydroxybutyrate donor poly-D-3-hydroxybutyric acid prevents inflammatory bowel disease through upregulation of regulatory T-cells.FASEB J.2023371e2270810.1096/fj.202200919R36562544
    [Google Scholar]
  44. ZhangM. WangY. ZhaoX. LiuC. WangB. ZhouJ. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review.Nutr. Res.20219511810.1016/j.nutres.2021.08.00734757305
    [Google Scholar]
  45. ZhangL. QiY. ALuoZ. LiuS. ZhangZ. ZhouL. Betaine increases mitochondrial content and improves hepatic lipid metabolism.Food Funct.201910121622310.1039/C8FO02004C30534761
    [Google Scholar]
  46. WangC. MaC. GongL. DaiS. LiY. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms.Eur. J. Pharmacol.202191217460410.1016/j.ejphar.2021.17460434743980
    [Google Scholar]
  47. ArumugamM.K. PaalM.C. DonohueT.M.Jr GanesanM. OsnaN.A. KharbandaK.K. Beneficial effects of betaine: a comprehensive review.Biology (Basel)202110645610.3390/biology1006045634067313
    [Google Scholar]
  48. MengD. SommellaE. SalviatiE. CampigliaP. GanguliK. DjebaliK. ZhuW. WalkerW.A. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine.Pediatr. Res.202088220921710.1038/s41390‑019‑0740‑x31945773
    [Google Scholar]
  49. WeiG.Z. MartinK.A. XingP.Y. AgrawalR. WhileyL. WoodT.K. HejndorfS. NgY.Z. LowJ.Z.Y. RossantJ. NechanitzkyR. HolmesE. NicholsonJ.K. TanE.K. MatthewsP.M. PetterssonS. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor.Proc. Natl. Acad. Sci. USA202111827e202109111810.1073/pnas.202109111834210797
    [Google Scholar]
  50. PernomianL. Duarte-SilvaM. De Barros CardosoC.R. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor.Clin. Rev. Allergy Immunol.202059338239010.1007/s12016‑020‑08789‑332279195
    [Google Scholar]
  51. PuccettiM. ParianoM. BorghiM. BarolaC. MorettiS. GalariniR. MosciP. RicciM. CostantiniC. GiovagnoliS. Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome.Int. J. Pharm.202160212061010.1016/j.ijpharm.2021.12061033865951
    [Google Scholar]
  52. BockK.W. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions.Biochem. Pharmacol.202017811409310.1016/j.bcp.2020.11409332535108
    [Google Scholar]
  53. XuX. SunS. LiangL. LouC. HeQ. RanM. ZhangL. ZhangJ. YanC. YuanH. ZhouL. ChenX. DaiX. WangB. ZhangJ. ZhaoJ. Role of the aryl hydrocarbon receptor and gut microbiota-derived metabolites indole-3-acetic acid in sulforaphane alleviates hepatic steatosis in mice.Front. Nutr.2021875656510.3389/fnut.2021.75656534722615
    [Google Scholar]
  54. DavidsonM. RashidiN. HossainM.K. RazaA. NurgaliK. ApostolopoulosV. Tryptophan and substance abuse: mechanisms and impact.Int. J. Mol. Sci.2023243273710.3390/ijms2403273736769059
    [Google Scholar]
  55. ChenZ. LinY. ZhouQ. XiaoS. LiC. LinR. LiJ. ChenY. LuoC. MoZ. Ginsenoside Rg1 mitigates morphine dependence via regulation of gut microbiota, tryptophan metabolism, and serotonergic system function.Biomed. Pharmacother.202215011293510.1016/j.biopha.2022.11293535447543
    [Google Scholar]
  56. HuangT. ZhaoL. LinC.Y. LuL. NingZ.W. HuD.D. ZhongL.L.D. YangZ.J. BianZ.X. Chinese herbal medicine (MaZiRenWan) improves bowel movement in functional constipation through down-regulating oleamide.Front. Pharmacol.202010157010.3389/fphar.2019.0157032038247
    [Google Scholar]
  57. Kałużna-CzaplińskaJ. GątarekP. ChirumboloS. ChartrandM.S. BjørklundG. How important is tryptophan in human health?Crit. Rev. Food Sci. Nutr.2019591728810.1080/10408398.2017.135753428799778
    [Google Scholar]
  58. GuZ. PeiW. ShenY. WangL. ZhuJ. ZhangY. FanS. WuQ. LiL. ZhangZ. Akkermansia muciniphila and its outer protein Amuc_1100 regulates tryptophan metabolism in colitis.Food Funct.20211220101841019510.1039/D1FO02172A34532729
    [Google Scholar]
  59. Peredo-LovilloA. Romero-LunaH.E. Jiménez-FernándezM. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism.Food Res. Int.202013610947310.1016/j.foodres.2020.109473
    [Google Scholar]
  60. GostnerJ.M. GeislerS. StonigM. MairL. Sperner-UnterwegerB. FuchsD. Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle.Neuropsychobiology2020791899910.1159/00049629330808841
    [Google Scholar]
  61. XueC. LiG. ZhengQ. GuX. ShiQ. SuY. ChuQ. YuanX. BaoZ. LuJ. LiL. Tryptophan metabolism in health and disease.Cell Metab.20233581304132610.1016/j.cmet.2023.06.00437352864
    [Google Scholar]
  62. CorreiaA.S. ValeN. Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways.Int. J. Mol. Sci.20222315849310.3390/ijms2315849335955633
    [Google Scholar]
  63. HöglundE. ØverliØ. WinbergS. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review.Front. Endocrinol. (Lausanne)20191015810.3389/fendo.2019.0015831024440
    [Google Scholar]
  64. GallegosA. IsseroffR.R. Simultaneous determination of tryptophan, 5-hydroxytryptophan, tryptamine, serotonin, and 5-HIAA in small volumes of mouse serum using UHPLC-ED.MethodsX2022910162410.1016/j.mex.2022.10162435141137
    [Google Scholar]
  65. ZhangZ.W. GaoC.S. ZhangH. YangJ. WangY.P. PanL.B. YuH. HeC.Y. LuoH.B. ZhaoZ.X. ZhouX.B. WangY.L. FuJ. HanP. DongY.H. WangG. LiS. WangY. JiangJ.D. ZhongW. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota.Acta Pharm. Sin. B20221283298331210.1016/j.apsb.2022.02.03235967282
    [Google Scholar]
  66. FukuwatariT. Possibility of amino acid treatment to prevent the psychiatric disorders via modulation of the production of tryptophan metabolite kynurenic acid.Nutrients2020125140310.3390/nu1205140332414200
    [Google Scholar]
  67. DehhaghiM. Kazemi S PH. GuilleminG.J. Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status.Int. J. Tryptophan Res.201912117864691985299610.1177/117864691985299631258331
    [Google Scholar]
  68. ChenL.M. BaoC.H. WuY. LiangS.H. WangD. WuL.Y. HuangY. LiuH.R. WuH.G. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease.J. Neuroinflammation202118113510.1186/s12974‑021‑02175‑234127024
    [Google Scholar]
  69. HughesT.D. GünerO.F. IradukundaE.C. PhillipsR.S. BowenJ.P. The kynurenine pathway and kynurenine 3-monooxygenase inhibitors.Molecules202227127310.3390/molecules2701027335011505
    [Google Scholar]
  70. ChenY. ZhangJ. YangY. XiangK. LiH. SunD. ChenL. Kynurenine-3-monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression.J. Cell. Physiol.2022237124339435510.1002/jcp.3087636088660
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303325372241014152811
Loading
/content/journals/emiddt/10.2174/0118715303325372241014152811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test