Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

This study aims to investigate the function and potential mechanism of Tanshinone IIA in uric acid-induced HK-2 fibrosis models.

Materials and Methods

An model of fibrosis was constructed using uric acid stimulation. RT-qPCR and Western blot were used to evaluate the levels of inflammatory cytokines. The detection of ROS and ELISA assay were used to analyze the changes in oxidative stress.

Results

Tanshinone IIA inhibited the increase in inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-18 and the formation of NLRP3 inflammasome induced by uric acid stimulation. In addition, Tanshinone IIA treatment reduced the production of ROS and MDA, promoting the expression of SOD and CAT, thereby protecting HK-2 cells from oxidative stress damage. Besides, the expression of TGF-β, FN, and Collagen I was significantly reduced by the treatment of Tanshinone IIA. Mechanistically, Tanshinone IIA inhibited the expression of inflammatory cytokines and the formation of the NLRP3 inflammasome by targeting NRF2.

Conclusion

Tanshinone IIA exerts a protective role in uric acid-induced HK-2 fibrosis models by targeting the NRF2-NLRP3 signaling pathway to reduce the occurrence of inflammation and oxidative stress.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303315786240926075342
2024-10-28
2025-09-24
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/9/EMIDDT-25-9-05.html?itemId=/content/journals/emiddt/10.2174/0118715303315786240926075342&mimeType=html&fmt=ahah

References

  1. UllahZ. YueP. MaoG. ZhangM. LiuP. WuX. ZhaoT. YangL. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective.Int. J. Biol. Macromol.2024278Pt 313483210.1016/j.ijbiomac.2024.13483239168219
    [Google Scholar]
  2. ZhangM. ZhuX. WuJ. HuangZ. ZhaoZ. ZhangX. XueY. WanW. LiC. ZhangW. WangL. ZhouM. ZouH. WangL. Prevalence of hyperuricemia among chinese adults: findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19.Front. Immunol.20221279198310.3389/fimmu.2021.79198335197964
    [Google Scholar]
  3. JoostenL.A.B. CrişanT.O. BjornstadP. JohnsonR.J. Asymptomatic hyperuricaemia: A silent activator of the innate immune system.Nat. Rev. Rheumatol.2020162758610.1038/s41584‑019‑0334‑331822862
    [Google Scholar]
  4. DincerH.E. DincerA.P. LevinsonD.J. Asymptomatic hyperuricemia: To treat or not to treat.Cleve. Clin. J. Med.200269859410.3949/ccjm.69.8.594
    [Google Scholar]
  5. WangS. FangY. YuX. GuoL. ZhangX. XiaD. The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion.Biomed. Pharmacother.201911116216810.1016/j.biopha.2018.12.05030579255
    [Google Scholar]
  6. DomańskiI. KoziełA. KuderskaN. WójcikP. DudzikT. DudzikŁ. Hyperuricemia – Consequences of not initiating therapy. Benefits and drawbacks of treatment.Reumatologia202462320721310.5114/reum/18999839055725
    [Google Scholar]
  7. AndersH.J. LiQ. SteigerS. Asymptomatic hyperuricaemia in chronic kidney disease: Mechanisms and clinical implications.Clin. Kidney J.202316692893810.1093/ckj/sfad00637261000
    [Google Scholar]
  8. ZhangF. YinJ. LiuL. LiuS. ZhangG. KongY. WangY. WangN. ChenX. WangF. IL-17C neutralization protects the kidney against acute injury and chronic injury.EBioMedicine20239210460710.1016/j.ebiom.2023.10460737263138
    [Google Scholar]
  9. GarsenM. BuijsersB. SolM. GockelnL. SonneveldR. Van KuppeveltT.H. De GraafM. Van Den BornJ. KampsJ.A.A.M. Van RaalteD.H. Van Der MeerR.W. LambH.J. HillebrandsJ.L. RabelinkT.J. Maciej-HulmeM.L. KrenningG. NijenhuisT. Van Der VlagJ. Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria.EBioMedicine20239010450610.1016/j.ebiom.2023.10450636889064
    [Google Scholar]
  10. BienaiméF. MuorahM. MetzgerM. BroeuilhM. HouillerP. FlamantM. HaymannJ.P. VonderscherJ. MizrahiJ. FriedlanderG. StengelB. TerziF. VrtovsnikF. DaugasE. FlamantM. Vidal-PetiotE. JacquotC. KarrasA. RoueffS. ThervetE. HouillierP. CourbebaisseM. Eladari et Gérard MaruaniD. Urena-TorresP. BoffaJ-J. RoncoP. FessiH. RondeauE. LetavernierE. TabibzadehN. HaymannJ-P. NephroTest Study Group Combining robust urine biomarkers to assess chronic kidney disease progression.EBioMed20239310463510.1016/j.ebiom.2023.10463537285616
    [Google Scholar]
  11. BaiH. ZhangZ. ZhuM. SunY. WangY. LiB. WangQ. KuangH. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine.Front. Pharmacol.202415142855810.3389/fphar.2024.142855839101136
    [Google Scholar]
  12. GherghinaM.E. PerideI. TiglisM. NeaguT.P. NiculaeA. ChecheritaI.A. Uric acid and oxidative stress—relationship with cardiovascular, metabolic, and renal impairment.Int. J. Mol. Sci.2022236318810.3390/ijms2306318835328614
    [Google Scholar]
  13. ShenS. HeF. ChengC. XuB. ShengJ. Uric acid aggravates myocardial ischemia–reperfusion injury via ROS/NLRP3 pyroptosis pathway.Biomed. Pharmacother.202113311099010.1016/j.biopha.2020.11099033232925
    [Google Scholar]
  14. NairA.R. LeeW.K. SmeetsK. SwennenQ. SanchezA. ThévenodF. CuypersA. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney.Arch. Toxicol.201589122273228910.1007/s00204‑014‑1401‑925388156
    [Google Scholar]
  15. LinY. LuoT. WengA. HuangX. YaoY. FuZ. LiY. LiuA. LiX. ChenD. PanH. Gallic acid alleviates gouty arthritis by inhibiting nlrp3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling.Front. Immunol.20201158059310.3389/fimmu.2020.58059333365024
    [Google Scholar]
  16. BillinghamL.K. StoolmanJ.S. VasanK. RodriguezA.E. PoorT.A. SziborM. JacobsH.T. ReczekC.R. RashidiA. ZhangP. MiskaJ. ChandelN.S. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation.Nat. Immunol.202223569270410.1038/s41590‑022‑01185‑335484407
    [Google Scholar]
  17. WuM. HanW. SongS. DuY. LiuC. ChenN. WuH. ShiY. DuanH. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice.Mol. Cell. Endocrinol.201847811512510.1016/j.mce.2018.08.00230098377
    [Google Scholar]
  18. LiZ. XuS. LiuP. Salvia miltiorrhizaBurge (Danshen): A golden herbal medicine in cardiovascular therapeutics.Acta Pharmacol. Sin.201839580282410.1038/aps.2017.19329698387
    [Google Scholar]
  19. GuoR. LiL. SuJ. LiS. DuncanS.E. LiuZ. FanG. Pharmacological activity and mechanism of tanshinone IIA in related diseases.Drug Des. Devel. Ther.2020144735474810.2147/DDDT.S26691133192051
    [Google Scholar]
  20. ZhangX.W. ZhouM. AnL. ZhangP. LiP. ChenJ. Lipophilic extract and tanshinone IIA derived from Salvia miltiorrhiza attenuate uric acid nephropathy through suppressing oxidative stress-activated mapk pathways.Am. J. Chin. Med.20204861455147310.1142/S0192415X2050071832933312
    [Google Scholar]
  21. WuX. LiuL. XieH. LiaoJ. ZhouX. WanJ. YuK. LiJ. ZhangY. Tanshinone IIA prevents uric acid nephropathy in rats through NF-κB inhibition.Planta Med.201278986687310.1055/s‑0031‑129848722588836
    [Google Scholar]
  22. ZhangW. LiuR. ZhouL. FengJ. HuangY. WuX. Effects of Tanshinone IIA on mitochondrial damage and related inflammatory factors in uric acid induced renal tubular epithelial cell fibrosis model.Chinese Med. Mater.2023461207211
    [Google Scholar]
  23. LiH. ZhangH. YanF. HeY. JiA. LiuZ. LiM. JiX. LiC. Kidney and plasma metabolomics provide insights into the molecular mechanisms of urate nephropathy in a mouse model of hyperuricemia.Biochim. Biophys. Acta Mol. Basis Dis.20221868616637410.1016/j.bbadis.2022.16637435276331
    [Google Scholar]
  24. RussoE. ViazziF. PontremoliR. BarbagalloC.M. BombelliM. CasigliaE. CiceroA.F.G. CirilloM. CirilloP. DesideriG. D’EliaL. FerriC. GallettiF. GesualdoL. GiannattasioC. IaccarinoG. LeonciniG. MallamaciF. MalobertiA. MasiS. MengozziA. MazzaA. MuiesanM.L. NazzaroP. PalatiniP. ParatiG. RattazziM. RivasiG. SalvettiM. TikhonoffV. TocciG. UngarA. VerdecchiaP. VirdisA. VolpeM. GrassiG. BorghiC. Working Group on UricAcid and Cardiovascular Risk of the Italian Society of Hypertension Association of uric acid with kidney function and albuminuria: The uric acid right for heart health (URRAH) project.J. Nephrol.202235121122110.1007/s40620‑021‑00985‑433755930
    [Google Scholar]
  25. OrgahJ.O. HeS. WangY. JiangM. WangY. OrgahE.A. DuanY. ZhaoB. ZhangB. HanJ. ZhuY. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications.Pharmacol. Res.202015310465410.1016/j.phrs.2020.10465431945473
    [Google Scholar]
  26. IsakaY. TakabatakeY. TakahashiA. SaitohT. YoshimoriT. Hyperuricemia-induced inflammasome and kidney diseases.Nephrol. Dial. Transplant.201631689089610.1093/ndt/gfv02425829326
    [Google Scholar]
  27. RamisM. EstebanS. MirallesA. TanD.X. ReiterR. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: A review.Curr. Med. Chem.201522222690271110.2174/092986732266615061910414326087763
    [Google Scholar]
  28. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd400224287781
    [Google Scholar]
  29. MittlerR. ROS are good.Trends Plant Sci.2017221111910.1016/j.tplants.2016.08.00227666517
    [Google Scholar]
  30. RapaS.F. Di IorioB.R. CampigliaP. HeidlandA. MarzoccoS. Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites.Int. J. Mol. Sci.201921126310.3390/ijms2101026331906008
    [Google Scholar]
  31. BaiR. GuoJ. YeX.Y. XieY. XieT. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease.Ageing Res. Rev.20227710161910.1016/j.arr.2022.10161935395415
    [Google Scholar]
  32. XiaoL. DaiZ. TangW. LiuC. TangB. AstragalosideI.V. Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2.Oxid. Med. Cell. Longev.202120211992556110.1155/2021/992556135003524
    [Google Scholar]
  33. WuJ. LiuX. FanJ. ChenW. WangJ. ZengY. FengX. YuX. YangX. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.Toxicology2014318223110.1016/j.tox.2014.01.00824530882
    [Google Scholar]
  34. YangY. CaiF. ZhouN. LiuS. WangP. ZhangS. ZhangY. ZhangA. JiaZ. HuangS. Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on NRF2.Clin. Transl. Med.2021114e38210.1002/ctm2.38233931960
    [Google Scholar]
  35. VaziriN.D. LiuS. FarzanehS.H. NazertehraniS. KhazaeliM. ZhaoY.Y. Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease.Free Radic. Biol. Med.20158637438110.1016/j.freeradbiomed.2015.04.02225930007
    [Google Scholar]
  36. AminzadehM.A. ReismanS.A. VaziriN.D. KhazaeliM. YuanJ. MeyerC.J. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease.Xenobiotica201444657057810.3109/00498254.2013.85270524195589
    [Google Scholar]
  37. KwonK. JungJ. SahuA. TaeG. Nanoreactor for cascade reaction between SOD and CAT and its tissue regeneration effect.J. Control. Release202234416017210.1016/j.jconrel.2022.02.03335247490
    [Google Scholar]
  38. SulO.J. RaS.W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells.Molecules20212622694910.3390/molecules2622694934834040
    [Google Scholar]
  39. LiG. LiuC. YangL. FengL. ZhangS. AnJ. LiJ. GaoY. PanZ. XuY. LiuJ. WangY. YanJ. CuiJ. QiZ. YangL. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway.Cell Biol. Toxicol.202339362163910.1007/s10565‑023‑09790‑036640193
    [Google Scholar]
  40. JingB. ChenZ. SiW. ZhaoJ. ZhaoG. ZhangD. (+)-Catechin attenuates CCI -induced neuropathic pain in male rats by promoting the Nrf2 antioxidant pathway to inhibit ROS / TLR4 / NF - κB -mediated activation of the NLRP3 inflammasome.J. Neurosci. Res.20241028e2537210.1002/jnr.2537239086264
    [Google Scholar]
  41. JiangX. LiuT. XiaY. GanH. RenW. DuX. Activation of the Nrf2/ARE signaling pathway ameliorates hyperlipidemia-induced renal tubular epithelial cell injury by inhibiting mtROS-mediated NLRP3 inflammasome activation.Front. Immunol.202415134235010.3389/fimmu.2024.134235038720901
    [Google Scholar]
  42. GuoH. CallawayJ.B. TingJ.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics.Nat. Med.201521767768710.1038/nm.389326121197
    [Google Scholar]
  43. HuttonH.L. OoiJ.D. HoldsworthS.R. KitchingA.R. The NLRP3 inflammasome in kidney disease and autoimmunity.Nephrology201621973674410.1111/nep.1278527011059
    [Google Scholar]
  44. EmingS.A. WynnT.A. MartinP. Inflammation and metabolism in tissue repair and regeneration.Science201735663421026103010.1126/science.aam792828596335
    [Google Scholar]
  45. PangY. ZhangP. LuR. LiH. LiJ. FuH. CaoY.W. FangG. LiuB. WuJ. ZhouJ. ZhouY. Andrade-oliveira salvianolic Acid B modulates caspase-1–mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway.Front. Pharmacol.20201154142610.3389/fphar.2020.54142633013384
    [Google Scholar]
  46. GuY. LiangZ. WangH. JinJ. ZhangS. XueS. ChenJ. HeH. DuanK. WangJ. ChangX. QiuC. Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation.Exp. Ther. Med.20161221147115210.3892/etm.2016.340027446335
    [Google Scholar]
  47. WangT. WangC. WuQ. ZhengK. ChenJ. LanY. QinY. MeiW. WangB. Evaluation of Tanshinone IIA developmental toxicity in zebrafish embryos.Molecules201722466010.3390/molecules2204066028430131
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303315786240926075342
Loading
/content/journals/emiddt/10.2174/0118715303315786240926075342
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): HK-2 fibrosis models; Inflammation; NLRP3; NRF2; Oxidative stress; Tanshinone IIA; Uric acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test