Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

The significance of circular RNAs (circRNAs) in diabetic complications has been established. However, their role in basal and diabetic states, as well as cognitive dysfunction, requires further investigation.

Methods

BV-2 microglial cells were exposed to high glucose (50 mM) and insulin (2 μM) for 48 hours. The levels of interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were assessed through quantitative polymerase chain reaction (qPCR), western blot, and ELISA. CircRNA and messenger RNA (mRNA) sequencing were performed, and the data were analyzed. Differentially expressed circRNAs and mRNAs were identified using qPCR. The circRNA-miRNA interaction was predicted using Miranda and TargetScan software, and their levels were quantified by qPCR.

Results

The results demonstrated a significant increase in mRNA and protein levels of IL-1β, IL-6, and TNF-α in BV2 cells treated with glucose and insulin. Five circRNAs (four upregulated and one downregulated) were identified in both glucose and insulin groups compared to the control. Further qPCR analysis revealed marked increases in the levels of chr17:40159331-40159711+ and chr2:72800499-72801858- (mmu_circ_0010164) in both treatment groups. Competitive endogenous RNA networks showed significant upregulation of mRNA levels of mitochondrial transcription termination factor 1b (Mterf1b) and G protein subunit gamma 4 (Gng4), accompanied by a decrease in mmu-miR-6918-3p and mmu-miR-7043-3p levels in the glucose and insulin groups compared to the control. Knockdown of mmu_circ_0010164 significantly inhibited the inflammatory response induced by glucose and insulin in BV-2 microglial cells.

Conclusion

These findings indicate that both glucose and insulin can elicit inflammatory responses in BV2 cells through the modulation of mmu_circ_0010164 levels. The underlying mechanism may involve potential downstream targets of mmu_circ_0010164, specifically mmu-miR-7043-3p/Gng4 and mmu-miR-6918-3p/Mterf1b. This provides novel insights into the treatment of glucose-induced neuroinflammation.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303321231240905073202
2024-11-29
2025-09-05
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  2. YeJ. WuY. YangS. ZhuD. ChenF. ChenJ. JiX. HouK. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: A systematic analysis of the Global Burden of Disease Study 2019.Front. Endocrinol. (Lausanne)202314119262910.3389/fendo.2023.1192629 37522116
    [Google Scholar]
  3. SankhuuY. AltaisaikhanO. BattsogtM.O. ByambasukhO. KhasagA. Diabetes-related mortality in a developing country: an exploration of Tertiary hospital data.J. Clin. Med.20231220668710.3390/jcm12206687 37892825
    [Google Scholar]
  4. SeidelmanJ.L. MantyhC.R. AndersonD.J. Surgical site infection prevention.JAMA2023329324425210.1001/jama.2022.24075 36648463
    [Google Scholar]
  5. CrowleyK. ScanaillP.Ó. HermanidesJ. BuggyD.J. Current practice in the perioperative management of patients with diabetes mellitus: A narrative review.Br. J. Anaesth.2023131224225210.1016/j.bja.2023.02.039 37061429
    [Google Scholar]
  6. TravicaN. LotfalianyM. MarriottA. SafavyniaS.A. LaneM.M. GrayL. VeroneseN. BerkM. SkvarcD. AslamH. GamageE. FormicaM. BishopK. MarxW. Peri-operative risk factors associated with Post-Operative Cognitive Dysfunction (POCD): An umbrella review of meta-analyses of observational studies.J. Clin. Med.2023124161010.3390/jcm12041610 36836145
    [Google Scholar]
  7. OyoshiT. MaekawaK. MitsutaY. HirataN. Predictors of early postoperative cognitive dysfunction in middle-aged patients undergoing cardiac surgery: Retrospective observational study.J. Anesth.202337335736310.1007/s00540‑023‑03164‑w 36658371
    [Google Scholar]
  8. WuY. YuC. GaoF. Risk factors for postoperative cognitive dysfunction in elderly patients undergoing surgery for oral malignancies.Perioper. Med. (Lond.)20231214210.1186/s13741‑023‑00330‑2 37468994
    [Google Scholar]
  9. HeJ. DuanR. QiuP. ZhangH. ZhangM. LiuM. WuX. LiJ. The risk factors of postoperative cognitive dysfunction in patients undergoing carotid endarterectomy: An updated meta-analysis.J. Cardiothorac. Surg.202318130910.1186/s13019‑023‑02428‑6 37946270
    [Google Scholar]
  10. HoriS. ImamuraY. KanieY. OkamuraA. KanamoriJ. WatanabeM. Early postoperative hyperglycemia as a predictor of postoperative infectious complications and overall survival in non-diabetic patients with esophageal cancer.J. Gastrointest. Surg.202327122743275110.1007/s11605‑023‑05869‑5 37940808
    [Google Scholar]
  11. KurnazP. SungurZ. CamciE. SivrikozN. OrhunG. SenturkM. SayinO. TireliE. GurvitH. The effect of two different glycemic management protocols on postoperative cognitive dysfunction in coronary artery bypass surgery.Rev. Bras. Anestesiol.201767325826510.1016/j.bjan.2016.01.007 28256333
    [Google Scholar]
  12. YaoJ. ChenK. TongH. LiuR. Predictive value of glycemic variability and HDL-C for secondary persistent inflammatory immunosuppressed Catabolic Syndrome in patients with sepsis.J. Inflamm. Res.2023165299530710.2147/JIR.S433895 38026256
    [Google Scholar]
  13. ChiariniA. GuiL. VivianiC. ArmatoU. Dal PràI. NLRP3 inflammasome’s activation in acute and chronic brain diseases—An update on pathogenetic mechanisms and therapeutic perspectives with respect to other inflammasomes.Biomedicines202311499910.3390/biomedicines11040999 37189617
    [Google Scholar]
  14. XiaoM.Z. LiuC.X. ZhouL.G. YangY. WangY. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review.Medicine (Baltimore)20231028e3299110.1097/MD.0000000000032991 36827061
    [Google Scholar]
  15. LiuY. YangW. XueJ. ChenJ. LiuS. ZhangS. ZhangX. GuX. DongY. QiuP. Neuroinflammation: The central enabler of postoperative cognitive dysfunction.Biomed. Pharmacother.202316711558210.1016/j.biopha.2023.115582 37748409
    [Google Scholar]
  16. ZhengX. GongT. TangC. ZhongY. ShiL. FangX. ChenD. ZhuZ. Gastrodin improves neuroinflammation-induced cognitive dysfunction in rats by regulating NLRP3 inflammasome.BMC Anesthesiol.202222137110.1186/s12871‑022‑01915‑y 36456961
    [Google Scholar]
  17. YangY. LiuY. ZhuJ. SongS. HuangY. ZhangW. SunY. HaoJ. YangX. GaoQ. MaZ. ZhangJ. GuX. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction.Free Radic. Biol. Med.202217813414610.1016/j.freeradbiomed.2021.12.004 34875338
    [Google Scholar]
  18. de Souza StorkS. HübnerM. BiehlE. DanielskiL.G. BonfanteS. JoaquimL. DenicolT. CidreiraT. PachecoA. BagioE. LanzzarinE. BernadesG. de OliveiraM.P. da SilvaL.E. MackJ.M. BobinskiF. RezinG.T. BarichelloT. StreckE.L. PetronilhoF. Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction.Inflammation20224562352236710.1007/s10753‑022‑01697‑y 35689164
    [Google Scholar]
  19. LiY. ZhangH. LongW. GaoM. GuoW. YuL. Inhibition of NLRP3 and Golph3 ameliorates diabetes-induced neuroinflammation in vitro and in vivo.Aging (Albany NY)202214218745876210.18632/aging.204363 36378718
    [Google Scholar]
  20. ZeinivandM. NahavandiA. ZareM. Deferoxamine regulates neuroinflammation and oxidative stress in rats with diabetes-induced cognitive dysfunction.Inflammopharmacology202028257558310.1007/s10787‑019‑00665‑7 31786804
    [Google Scholar]
  21. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  22. GiriP.M. BanerjeeA. GhosalA. LayekB. Neuroinflammation in neurodegenerative disorders: Current knowledge and therapeutic implications.Int. J. Mol. Sci.2024257399510.3390/ijms25073995 38612804
    [Google Scholar]
  23. BoraschiD. ItalianiP. MiglioriniP. BossùP. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases.Front. Immunol.202314112819010.3389/fimmu.2023.1128190 37223102
    [Google Scholar]
  24. AndersonF.L. BiggsK.E. RankinB.E. HavrdaM.C. NLRP3 inflammasome in neurodegenerative disease.Transl. Res.2023252213310.1016/j.trsl.2022.08.006 35952982
    [Google Scholar]
  25. XuY. YangY. ChenX. JiangD. ZhangF. GuoY. HuB. XuG. PengS. WuL. HuJ. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors.Transl. Neurodegener.20231214910.1186/s40035‑023‑00381‑x 37915104
    [Google Scholar]
  26. ZhouJ. ZhangC. FangX. ZhangN. ZhangX. ZhuZ. Activation of autophagy inhibits the activation of NLRP3 inflammasome and alleviates sevoflurane-induced cognitive dysfunction in elderly rats.BMC Neurosci.2023241910.1186/s12868‑023‑00777‑5 36709248
    [Google Scholar]
  27. ZhangM. YinY. Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways.Front. Immunol.202314110231210.3389/fimmu.2023.1102312 36776829
    [Google Scholar]
  28. LiZ. RenY. LvZ. LiM. LiY. FanX. XiongY. QianL. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications.Biomed. Pharmacother.202316811574410.1016/j.biopha.2023.115744 37862970
    [Google Scholar]
  29. BenitezM.B. NavarroY. Azuara-LiceagaE. CruzA. FloresJ. Lopez-CanovasL. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review).Int. J. Mol. Med.20245354410.3892/ijmm.2024.5368 38516776
    [Google Scholar]
  30. Samavarchi TehraniS. GoodarziG. PanahiG. ManiatiM. MeshkaniR. Multiple novel functions of circular RNAs in diabetes mellitus.Arch. Physiol. Biochem.202312961235124910.1080/13813455.2021.1933047 34087083
    [Google Scholar]
  31. PanJ. LiuF. XiaoX. XuR. DaiL. ZhuM. XuH. XuY. ZhaoA. ZhouW. DangY. JiG. METTL3 promotes colorectal carcinoma progression by regulating the m6A–CRB3–Hippo axis.J. Exp. Clin. Cancer Res.20224111910.1186/s13046‑021‑02227‑8 35012593
    [Google Scholar]
  32. DangY. HuD. XuJ. LiC. TangY. YangZ. LiuY. ZhouW. ZhangL. XuH. XuY. JiG. Comprehensive analysis of 5‐hydroxymethylcytosine in zw10 kinetochore protein as a promising biomarker for screening and diagnosis of early colorectal cancer.Clin. Transl. Med.2020103e12510.1002/ctm2.125 32628818
    [Google Scholar]
  33. DangY. XuR. PanJ. XiaoX. ZhangS. ZhouW. XuY. JiG. Dynamic changes in DNA methylation and hydroxymethylation revealed the transformation of advanced adenoma into colorectal carcinoma.Clin. Transl. Med.2023133e120210.1002/ctm2.1202 36855789
    [Google Scholar]
  34. HungH.C. TsaiS.F. SieS.R. KuoY.M. High glucose enhances lipopolysaccharide‐induced inflammation in cultured BV2 microglial cell line.Immun. Inflamm. Dis.2022105e61010.1002/iid3.610 35478445
    [Google Scholar]
  35. TianR. LiuX. XiaoY. JingL. TaoH. YangL. MengX. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1β secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling.J. Ethnopharmacol.202432311768610.1016/j.jep.2023.117686 38160864
    [Google Scholar]
  36. YangK. ZengL. HeQ. WangS. XuH. GeJ. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products.Front. Pharmacol.202415125091810.3389/fphar.2024.1250918 38601463
    [Google Scholar]
  37. MeiM. LiuM. MeiY. ZhaoJ. LiY. Sphingolipid metabolism in brain insulin resistance and neurological diseases.Front. Endocrinol. (Lausanne)202314124313210.3389/fendo.2023.1243132 37867511
    [Google Scholar]
  38. XiaoF. HeZ. WangS. LiJ. FanX. YanT. YangM. YangD. Regulatory mechanism of circular RNAs in neurodegenerative diseases.CNS Neurosci. Ther.2024304e1449910.1111/cns.14499 37864389
    [Google Scholar]
  39. ZhangY.J. ZhuW.K. QiF.Y. CheF.Y. CircHIPK3 promotes neuroinflammation through regulation of the miR-124-3p/STAT3/NLRP3 signaling pathway in Parkinson’s disease.Adv. Clin. Exp. Med.202332331532910.17219/acem/154658 36306116
    [Google Scholar]
  40. HeC. LiZ. YangM. YuW. LuoR. ZhouJ. HeJ. ChenQ. SongZ. ChengS. Non-coding RNA in microglia activation and neuroinflammation in Alzheimer’s disease.J. Inflamm. Res.2023164165421110.2147/JIR.S422114 37753266
    [Google Scholar]
  41. HuangR. ZhangW. LiW. GaoY. ZhengD. BiG. Overexpressing circ_0000831 is sufficient to inhibit neuroinflammation and vertigo in cerebral ischemia through a miR-16-5p-dependent mechanism.Exp. Neurol.202235311404710.1016/j.expneurol.2022.114047 35300972
    [Google Scholar]
  42. HeG. HeY. NiH. WangK. ZhuY. BaoY. Dexmedetomidine attenuates neuroinflammation and microglia activation in LPS-stimulated BV2 microglia cells through targeting circ-Shank3/miR-140-3p/TLR4 axis.Eur. J. Histochem.20236736710.4081/ejh.2023.3766 37491974
    [Google Scholar]
  43. WangX. ZhangS. LvB. ChenH. ZhangW. DongL. BaoL. WangM. WangY. MaoW. CuiL. PangY. WangF. YanF. ZhangZ. CuiG. CircularR.N.A. Circular RNA PTP4A2 regulates microglial polarization through STAT3 to promote neuroinflammation in ischemic stroke.CNS Neurosci. Ther.2024304e1451210.1111/cns.14512 37869777
    [Google Scholar]
  44. ChenT. WangC. ZhuW. YuF. DongX. SuY. HuangJ. HuoL. WanP. mm9_circ_014683 regulates microglia polarization through canonical NFκB signaling pathway in diabetic retinopathy.Cell. Signal.202411711112110.1016/j.cellsig.2024.111121 38417635
    [Google Scholar]
  45. ZingaleV.D. GugliandoloA. MazzonE. MiR-155: An important regulator of neuroinflammation.Int. J. Mol. Sci.20212319010.3390/ijms23010090 35008513
    [Google Scholar]
  46. WenQ. WangY. PanQ. TianR. ZhangD. QinG. ZhouJ. ChenL. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model.J. Neuroinflammation202118128710.1186/s12974‑021‑02342‑5 34893074
    [Google Scholar]
  47. LiY. ZhouD. RenY. ZhangZ. GuoX. MaM. XueZ. LvJ. LiuH. XiQ. JiaL. ZhangL. LiuY. ZhangQ. YanJ. DaY. GaoF. YueJ. YaoZ. ZhangR. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1.Autophagy201915347849210.1080/15548627.2018.1522467 30208760
    [Google Scholar]
  48. OuH. ChenK. ChenL. WuH. Bioinformatic analysis of PD-1 checkpoint blockade response in influenza infection.BMC Genomic. Data20222316510.1186/s12863‑022‑01081‑7 35962325
    [Google Scholar]
  49. BarreiroK. LayA.C. LeparcG. TranV.D.T. RoslerM. DayalanL. BurdetF. IbbersonM. CowardR.J.M. HuberT.B. KrämerB.K. DelicD. HolthoferH. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles.J. Extracell. Vesicles20231221230410.1002/jev2.12304 36785873
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303321231240905073202
Loading
/content/journals/emiddt/10.2174/0118715303321231240905073202
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CeRNA networks; CircRNA; diabetes; glucose; insulin; Neuroinflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test