Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

As Ugandans grapple with an increase in metabolic diseases, researchers are turning to their rich tradition of natural remedies. This review explores promising plants, such as , bridging the gap between the wisdom of Ugandan healers and modern science. Although these plants show potential, challenges remain. Many lack rigorous testing, standardized extracts, and long-term safety data. To unlock their true potential, a multipronged approach is needed. First, well-designed clinical trials are crucial to bringing together traditional healers and modern researchers. Imagine a Ugandan pharmacist precisely measuring a extract – this standardization ensures consistent results for future patients. Second, researchers need to delve deeper into how these plants influence the body. Finally, long-term safety studies are essential, especially when combined with medications. By following these steps, researchers can unleash the true power of Ugandan natural products. This empowers Ugandans to take control of their health. Future exploration of lesser-known plants and culturally sensitive education programs can further equip Ugandans on their way to well-being.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303320109241014064209
2025-01-10
2025-11-03
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/12/EMIDDT-25-12-04.html?itemId=/content/journals/emiddt/10.2174/0118715303320109241014064209&mimeType=html&fmt=ahah

References

  1. HurtadoM.D. VellaA. What is type 2 diabetes?Medicine201947105
    [Google Scholar]
  2. Tamel SelvanK. GoonJA. MakpolS. TanJK. Effects of microalgae on metabolic syndrome.Antioxidants202312449
    [Google Scholar]
  3. IDF Diabetes AtlasInternational Diabetes Federation2019Available from: https://diabetesatlas.org/
    [Google Scholar]
  4. ObakiroS.B. KiyimbaK. LukwagoT.W. LulenziJ. OworR.O. AndimaM. HokelloJ.F. KawumaC. NantaleG. KibuuleD. AnywarG. WaakoP. GavamukulyaY. Ethnobotanical study of plants used in management of diabetes mellitus in Eastern Uganda.Phytomedicine Plus20233410048610.1016/j.phyplu.2023.100486
    [Google Scholar]
  5. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.11070832927252
    [Google Scholar]
  6. YuB. TangQ. FuC. RegensteinJ. HuangJ. WangL. Effects of different particle-sized insoluble dietary fibre from citrus peel on adsorption and activity inhibition of pancreatic lipase.Food Chem.202339813383410.1016/j.foodchem.2022.13383435961174
    [Google Scholar]
  7. Noncommunicable diseasesWorld Health Organization2023Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
    [Google Scholar]
  8. EisenbergD.M. DavisR.B. EttnerS.L. AppelS. WilkeyS. Van RompayM. KesslerR.C. Trends in alternative medicine use in the United States, 1990-1997: Results of a follow-up national survey.JAMA1998280181569157510.1001/jama.280.18.15699820257
    [Google Scholar]
  9. FuY.S. ChenT.H. WengL. HuangL. LaiD. WengC.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential.Biomed. Pharmacother.202114111188810.1016/j.biopha.2021.11188834237598
    [Google Scholar]
  10. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  11. RachithaP. KrishnaswamyK. LazarR.A. GuptaV.K. InbarajB.S. RaghavendraV.B. SharmaM. SridharK. Attenuation of hyperlipidemia by medicinal formulations of emblica officinalis synergized with nanotechnological approaches.Bioengineering (Basel)20231016410.3390/bioengineering1001006436671636
    [Google Scholar]
  12. YangA. LinX. LiuZ. DuanX. YuanY. ZhangJ. LiangQ. JiX. SunN. YuH. HeW. ZhuL. XuB. LinX. Worm generator: A system for high-throughput in vivo screening.Nano Lett.20232341280128810.1021/acs.nanolett.2c0445636719250
    [Google Scholar]
  13. ZenginG. MollicaA. ArsenijevićJ. PavlićB. ZekovićZ. SinanK.I. YanL. Cvetanović KljakićA. RažićS. A comparative study of chamomile essential oils and lipophilic extracts obtained by conventional and greener extraction techniques: Chemometric approach to chemical composition and biological activity.Separations20221011810.3390/separations10010018
    [Google Scholar]
  14. AhmedO.A.A. HassanN.A. AzharA.S. El-MasM.M. El-BassossyH.M. A nano-pharmaceutical formula of quercetin protects from cardiovascular complications associated with metabolic syndrome.Front. Pharmacol.20211269698110.3389/fphar.2021.69698134456723
    [Google Scholar]
  15. OrhanI.E. Pharmacognosy: Science of natural products in drug discovery.Bioimpacts20174310911010.15171/bi.2014.00125337461
    [Google Scholar]
  16. WalusansaA. AsiimweS. SsenkuJ.E. AnywarG. NamaraM. NakavumaJ.L. KakudidiE.K. Herbal medicine used for the treatment of diarrhea and cough in Kampala city, Uganda.Trop. Med. Health2022501510.1186/s41182‑021‑00389‑x34991719
    [Google Scholar]
  17. TaweerutchanaR. LumlerdkijN. VannasaengS. AkarasereenontP. SriwijitkamolA. Effect of moringa oleifera leaf capsules on glycemic control in therapy-naïve type 2 diabetes patients: A randomized placebo controlled study.Evid. Based Complement. Alternat. Med.201720171658139010.1155/2017/658139029317895
    [Google Scholar]
  18. SzypowskaA. ZatońskaK. SzubaA. Regulska-IlowB. Dietary inflammatory index (DII)® and metabolic syndrome in the selected population of polish adults: Results of the pure poland sub-study.Int. J. Environ. Res. Public Health2023202105610.3390/ijerph2002105636673811
    [Google Scholar]
  19. SreejayanN. RaoM.N. Free radical scavenging activity of curcuminoids.Arzneimittelforschung19964621691718720307
    [Google Scholar]
  20. GolzarandM. OmidianM. ToolabiK. Effect of Garcinia cambogia supplement on obesity indices: A systematic review and dose-response meta-analysis.Complement. Ther. Med.20205210245110.1016/j.ctim.2020.10245132951714
    [Google Scholar]
  21. HaoZ. ZhangZ. ZhaoY. WangD. Baicalin reduces immune cell infiltration by inhibiting inflammation and protecting tight junctions in ischemic stroke injury.Am. J. Chin. Med.202351235537210.1142/S0192415X2350018036661075
    [Google Scholar]
  22. AdaramoyeO.A. NwaneriV.O. AnyanwuK.C. FarombiE.O. EmeroleG.O. Possible anti-atherogenic effect of kolaviron (a Garcinia kola seed extract) in hypercholesterolaemic rats.Clin. Exp. Pharmacol. Physiol.2005321-2404610.1111/j.1440‑1681.2005.04146.x15730433
    [Google Scholar]
  23. PiJ. WangJ. FengX. LiZ. LiuY. YangW. ZhangT. GuoP. LiuZ. QiD. The flavonoid components of scutellaria baicalensis: Biopharmaceutical properties and their improvement using nanoformulation techniques.Curr. Top. Med. Chem.2023231172910.2174/156802662366622112814425836443977
    [Google Scholar]
  24. AzizT. NadeemA.A. SarwarA. PerveenI. HussainN. KhanA.A. DaudzaiZ. CuiH. LinL. Particle nanoarchitectonics for nanomedicine and nanotherapeutic drugs with special emphasis on nasal drugs and aging.Biomedicines202311235410.3390/biomedicines1102035436830891
    [Google Scholar]
  25. AditiD.K. DabralK. Role of essential oils and bioactive components for manufacturing cosmetic items.J. Res. Appl. Sci. Biotech.202321355410.55544/jrasb.2.1.8
    [Google Scholar]
  26. WangZ.Q. RibnickyD. ZhangX.H. ZuberiA. RaskinI. YuY. CefaluW.T. An extract of Artemisia dracunculus L. enhances insulin receptor signaling and modulates gene expression in skeletal muscle in KK-Ay mice.J. Nutr. Biochem.2011221717810.1016/j.jnutbio.2009.11.01520447816
    [Google Scholar]
  27. WeiZ. PanJ. LiY. ArtemisininG. Artemisinin G: A sesquiterpene from artemisia annua.Planta Med.199258330010.1055/s‑2006‑96147017226480
    [Google Scholar]
  28. IvanescuB. MironA. CorciovaA. Sesquiterpene lactones from artemisia genus: Biological activities and methods of analysis.J. Anal. Methods Chem.2015201512110.1155/2015/24768526495156
    [Google Scholar]
  29. WangQ. ZhaoX. JiangY. JinB. WangL. Functions of representative terpenoids and their biosynthesis mechanisms in medicinal plants.Biomolecules20231312172510.3390/biom1312172538136596
    [Google Scholar]
  30. AbadM.J. BedoyaL.M. ApazaL. BermejoP. The Artemisia L. Genus: A review of bioactive essential oils.Molecules20121732542256610.3390/molecules1703254222388966
    [Google Scholar]
  31. AdetunjiC.O. MichaelO.S. RatheeS. SinghK.R.B. AjayiO.O. AdetunjiJ.B. OjhaA. SinghJ. SinghR.P. Potentialities of nanomaterials for the management and treatment of metabolic syndrome: A new insight.Materials Today Advances20221310019810.1016/j.mtadv.2021.100198
    [Google Scholar]
  32. HesariM. MohammadiP. KhademiF. ShackebaeiD. MomtazS. MoasefiN. FarzaeiM.H. AbdollahiM. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases.Int. J. Nanomedicine2021163293331510.2147/IJN.S29550834007178
    [Google Scholar]
  33. CaiM. WangY. WangR. LiM. ZhangW. YuJ. HuaR. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil.Int. J. Biol. Macromol.202220212212910.1016/j.ijbiomac.2022.01.06635041880
    [Google Scholar]
  34. NegriG. CallóD. Mano-SousaB.J. Duarte-AlmeidaJ.M. CarliniE.A. TabachR. Phytochemistry profile of rosella and jambolan extracts and the therapeutic effects on obesity.Food Funct.20221352606261710.1039/D1FO02763H35166751
    [Google Scholar]
  35. Davatgaran TaghipourY. HajialyaniM. NaseriR. HesariM. MohammadiP. StefanucciA. MollicaA. FarzaeiM.H. AbdollahiM. Nanoformulations of natural products for management of metabolic syndrome.Int. J. Nanomedicine2019145303532110.2147/IJN.S21383131406461
    [Google Scholar]
  36. GoktasZ. ZuY. AbbasiM. GalyeanS. WuD. FanZ. WangS. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities.J. Agric. Food Chem.202068318119813110.1021/acs.jafc.0c0013132633507
    [Google Scholar]
  37. RahmanM.M. IslamM.R. AkashS. Harun-Or-RashidM. RayT.K. RahamanM.S. IslamM. AnikaF. HosainM.K. AoviF.I. HemegH.A. RaufA. WilairatanaP. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.11330535717779
    [Google Scholar]
  38. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. BarbalhoS.M. HaberJ.F.S. SinatoraR.V. DetregiachiC.R.P. GirioR.J.S. BuchaimD.V. Cincotto dos Santos BuenoP. The effects of curcumin on diabetes mellitus: A systematic review.Front. Endocrinol. (Lausanne)20211266944810.3389/fendo.2021.66944834012421
    [Google Scholar]
  39. SantosF.H. PandaS.K. FerreiraD.C.M. DeyG. MolinaG. PelissariF.M. Targeting infections and inflammation through micro and nano-nutraceuticals.Food Biosci.20224910189110.1016/j.fbio.2022.101891
    [Google Scholar]
  40. LiR. ZhanW. HuangX. ZhangZ. ZhouM. BaoW. LiQ. MaY. Association of dietary inflammatory index and metabolic syndrome in the elderly over 55 years in Northern China.Br. J. Nutr.202212861082108910.1017/S000711452100420734658314
    [Google Scholar]
  41. ObulesuM. Turmeric and curcumin for neurodegenerative diseases.1st edWalthamElsevier2021
    [Google Scholar]
  42. BaoJ. HuangB. ZouL. ChenS. ZhangC. ZhangY. ChenM. WanJ.B. SuH. WangY. HeC. Hormetic effect of berberine attenuates the anticancer activity of chemotherapeutic agents.PLoS One2015109e013929810.1371/journal.pone.013929826421434
    [Google Scholar]
  43. HuangD. WuF. ZhangA. SunH. WangX. Efficacy of berberine in treatment of Rheumatoid arthritis: From multiple targets to therapeutic potential.Pharmacol. Res.202116910566710.1016/j.phrs.2021.10566733989762
    [Google Scholar]
  44. XieW. SuF. WangG. PengZ. XuY. ZhangY. XuN. HouK. HuZ. ChenY. ChenR. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis.Front. Pharmacol.202213101504510.3389/fphar.2022.101504536467075
    [Google Scholar]
  45. OoiC.P. YassinZ. HamidT.A. Momordica charantia for type 2 diabetes mellitus.Cochrane Libr.20128CD00784510.1002/14651858.CD007845.pub322895968
    [Google Scholar]
  46. RudrapalM. Phytoantioxidants and nanotherapeutics.Hoboken, NJWiley2023
    [Google Scholar]
  47. Sharifi-RadJ. QuispeC. AlfredM.A. Anil KumarN.V. LombardiN. CinquantaL. IritiM. VaroniE.M. GuptaG. ChellappanD.K. DuaK. CardosoS.M. PeronG. DeyA. Cruz-MartinsN. RodriguesC.F. Current trends on resveratrol bioactivities to treat periodontitis.Food Biosci.20214210120510.1016/j.fbio.2021.101205
    [Google Scholar]
  48. ZhangX. LiJ. YangB. LengQ. LiJ. WangX. LuJ. OlatunjiO.J. TangJ. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats.Chem. Biodivers.2021185e210006510.1002/cbdv.20210006533738897
    [Google Scholar]
  49. KrahE. de KruijfJ. RagnoL. Integrating traditional healers into the health care system: Challenges and opportunities in rural northern ghana.J. Community Health201843115716310.1007/s10900‑017‑0398‑428681282
    [Google Scholar]
  50. SsenkuJ.E. OkurutS.A. NamuliA. KudambaA. TugumeP. MatovuP. WasigeG. KafeeroH.M. WalusansaA. Medicinal plant use, conservation, and the associated traditional knowledge in rural communities in Eastern Uganda.Trop. Med. Health20225013910.1186/s41182‑022‑00428‑135668541
    [Google Scholar]
  51. BahloulB. Castillo-HenríquezL. JenhaniL. ArouaN. FtouhM. KalboussiN. Vega-BaudritJ. MignetN. Nanomedicine-based potential phyto-drug delivery systems for diabetes.J. Drug Deliv. Sci. Technol.20238210437710.1016/j.jddst.2023.104377
    [Google Scholar]
  52. MutolaS. PemuntaN.V. NgoN.V. Utilization of traditional medicine and its integration into the healthcare system in Qokolweni, South Africa; prospects for enhanced universal health coverage.Complement. Ther. Clin. Pract.20214310138610.1016/j.ctcp.2021.10138633895465
    [Google Scholar]
  53. KimS.J. ShahF.H. Network pharmacology analysis with molecular docking of phytochemicals of Panax ginseng against osteosarcoma.Pharmacogn. Mag.2022187717510.4103/pm.pm_518_21
    [Google Scholar]
  54. HosseiniH. GhavidelF. PanahiG. MajeedM. SahebkarA. A systematic review and meta-analysis of randomized controlled trials investigating the effect of the curcumin and piperine combination on lipid profile in patients with metabolic syndrome and related disorders.Phytother. Res.20233731212122410.1002/ptr.773036649934
    [Google Scholar]
  55. SadeghianM. RahmaniS. JafariehA. JamialahmadiT. SahebkarA. The effect of curcumin supplementation on renal function: A systematic and meta-analysis of randomized controlled trials.J. Funct. Foods202310010539610.1016/j.jff.2022.105396
    [Google Scholar]
  56. MengT. WangP. XieX. LiT. KongL. XuY. CaoK. GaoY. HeQ. LaiX. Efficacy and safety of Songling Xuemaikang capsule for essential hypertension: A systematic review and meta-analysis of randomized controlled trials.Phytomedicine202210715445910.1016/j.phymed.2022.15445936183476
    [Google Scholar]
  57. MishraB. UpadhyayM. KumarA. Role of nutraceuticals in metabolic syndrome.Drug Delivery Systems for Metabolic Disorders.Elsevier202245946710.1016/B978‑0‑323‑99616‑7.00033‑5
    [Google Scholar]
  58. Mohd ZaidN.A. SekarM. BonamS.R. GanS.H. LumP.T. BegumM.Y. Mat RaniN.N.I. VaijanathappaJ. WuY.S. SubramaniyanV. FuloriaN.K. FuloriaS. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action.Drug Des. Devel. Ther.202216236610.2147/DDDT.S32633235027818
    [Google Scholar]
  59. YamagishiY. KudoT. OyumiM. SakamotoY. TakahashiK. AkashiT. KobayashiS. KawakamiT. GodaH. SatoY. MimakiM. KodamaH. MunakataM. MakinoK. TakahashiH. FukamiT. ItoK. Pharmacokinetics of CuGTSM, a novel drug candidate, in a mouse model of menkes disease.Pharm. Res.20213881335134410.1007/s11095‑021‑03090‑034403032
    [Google Scholar]
  60. XuJ. LinQ. ShengM. DingT. LiB. GaoY. TanY. Antibiofilm effect of cinnamaldehyde-chitosan nanoparticles against the biofilm of Staphylococcus aureus. Antibiotics (Basel)20221110140310.3390/antibiotics1110140336290061
    [Google Scholar]
  61. GuestP.C. Physical Exercise and Natural and Synthetic Products in Health and Disease.SpringerHumana New York, NY202210.1007/978‑1‑0716‑1558‑4
    [Google Scholar]
  62. YücelÇ. Şeker KaratoprakG. Nanotechnology and phytonutrients.The Role of Phytonutrients in Metabolic Disorders.Elsevier20226710210.1016/B978‑0‑12‑824356‑5.00008‑4
    [Google Scholar]
  63. DiasM. Romaní-PérezM. RomaníA. de la CruzA. PastranaL. FuciñosP. AmadoI.R. Recent technological advances in phenolic compounds recovery and applications: Source of nutraceuticals for the management of diabetes.Appl. Sci. (Basel)20221218927110.3390/app12189271
    [Google Scholar]
  64. NurcahyantiA.D.R. CokroF. WulanjatiM.P. MahmoudM.F. WinkM. SobehM. Curcuminoids for metabolic syndrome: Meta-analysis evidences toward personalized prevention and treatment management.Front. Nutr.2022989133910.3389/fnut.2022.89133935757255
    [Google Scholar]
  65. QianX.K. ZhangJ. LiX.D. SongP.F. ZouL.W. Research progress on dipeptidyl peptidase family: Structure, function and xenobiotic metabolism.Curr. Med. Chem.202229122167218810.2174/092986732866621091510343134525910
    [Google Scholar]
  66. DewanjeeS. ChakrabortyP. MukherjeeB. De FeoV. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy.Int. J. Mol. Sci.2020216221710.3390/ijms2106221732210082
    [Google Scholar]
  67. FadelH.H.M. El-GhorabA.H. HusseinA.M.S. El-MassryK.F. LotfyS.N. Sayed AhmedM.Y. SolimanT.N. Correlation between chemical composition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils.Arab. J. Chem.20201386815682710.1016/j.arabjc.2020.06.034
    [Google Scholar]
  68. GujarK. WairkarS. Nanocrystal technology for improving therapeutic efficacy of flavonoids.Phytomedicine20207115324010.1016/j.phymed.2020.15324032450461
    [Google Scholar]
  69. NouriZ. HajialyaniM. IzadiZ. BahramsoltaniR. FarzaeiM.H. AbdollahiM. Nanophytomedicines for the prevention of metabolic syndrome: A pharmacological and biopharmaceutical review.Front. Bioeng. Biotechnol.2020842510.3389/fbioe.2020.0042532478050
    [Google Scholar]
  70. MoradiS.Z. MomtazS. BayramiZ. FarzaeiM.H. AbdollahiM. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders.Front. Bioeng. Biotechnol.2020823810.3389/fbioe.2020.0023832318551
    [Google Scholar]
  71. DasA. SaikiaR. PathakK. GogoiU. PathakM.P. Anti-diabetic Nano-formulation from Herbal Source.Nano Medicine and Nano Safety. DasM.K. PathakY.V. SingaporeSpringer Singapore2020618410.1007/978‑981‑15‑6255‑6_4
    [Google Scholar]
  72. GangR. MatsabisaM. OkelloD. KangY. Ethnomedicine and ethnopharmacology of medicinal plants used in the treatment of diabetes mellitus in Uganda.Applied Biological Chemistry20236613910.1186/s13765‑023‑00797‑z
    [Google Scholar]
  73. GomesM.A. ManzanoC. AlvesT.M. FiaisG.A. FreitasR.N. Coutinho MatteraM.S.L. DornellesR.C.M. MatsushitaD.H. Stevanato NakamuneA.C.M. Chaves-NetoA.H. Assessment of redox state and biochemical parameters of salivary glands in streptozotocin-induced diabetic male rats treated with mate tea (Ilex paraguariensis).Arch. Oral Biol.202214310555110.1016/j.archoralbio.2022.10555136167015
    [Google Scholar]
  74. LinH.C. LinJ.Y. Guava seed polysaccharides ameliorate the inflammatory status in PC-3 xenograft mice.Food Hydrocolloids for Health2022210006810.1016/j.fhfh.2022.100068
    [Google Scholar]
  75. VeisehO. TangB.C. WhiteheadK.A. AndersonD.G. LangerR. Managing diabetes with nanomedicine: Challenges and opportunities.Nat. Rev. Drug Discov.2015141455710.1038/nrd447725430866
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303320109241014064209
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test