Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Sedentary lifestyles and prolonged physical inactivity are often linked to poor mental and physical health as well as an increased risk of a number of chronic illnesses, including cancer, obesity, type 2 diabetes, and cardiovascular problems. Metabolic Syndrome (MetS), as the new disease, has emerged as the world's leading cause of illness. Despite having its roots in the West, this issue has now completely globalized due to the development of the Western way of life throughout the world. It currently affects almost one-fifth of the American and European populations, and its incidence has increased in Southeast Asian nations as well. Comparing patients with metabolic syndrome to the general population, it is estimated that they have a 5-fold greater risk of diabetes mellitus and a 2-fold increased risk of atherosclerotic cardiovascular illnesses. MetS is a chronic or prevalent condition associated with various lifestyle conditions characterized by abdominal obesity, low HDL-c cholesterol, insulin resistance, high blood pressure, and dyslipidemia. It has been suggested that insulin resistance, chronic inflammation, and neurohormonal activation are the factors behind the development of metabolic syndrome. In lieu of an upsurge in the complications associated with MetS in modern society, many alternative approaches apart from medicine are being constantly explored. Effects of vivid dietary patterns and nutritional interventions have been thoroughly researched, although the most effective dietary approach remains undetermined. This review discussed different etiological aspects of MetS and brought forth the role of nutritional approaches, micro- and macronutrient intake, lifestyle changes, and herbal intervention in its management.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303316445241108100017
2025-01-14
2025-10-08
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/12/EMIDDT-25-12-03.html?itemId=/content/journals/emiddt/10.2174/0118715303316445241108100017&mimeType=html&fmt=ahah

References

  1. MohamedS.M. ShalabyM.A. El-ShiekhR.A. El-BannaH.A. EmamS.R. BakrA.F. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches.Food Chem. Adv.2023310033510.1016/j.focha.2023.100335
    [Google Scholar]
  2. LemosG.O. TorrinhasR.S. WaitzbergD.L. Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome.Nutrients2023155121710.3390/nu15051217
    [Google Scholar]
  3. ZhaoX. AnX. YangC. SunW. JiH. LianF. The crucial role and mechanism of insulin resistance in metabolic disease.Front. Endocrinol. (Lausanne)202314114923910.3389/fendo.2023.1149239
    [Google Scholar]
  4. SharmaV.K. SinghT.G. Chronic stress and diabetes mellitus: interwoven pathologies.Curr. Diabetes Rev.202016654655610.2174/1573399815666191111152248
    [Google Scholar]
  5. FahedG. AounL. Bou ZerdanM. AllamS. Bou ZerdanM. BouferraaY. AssiH.I. Metabolic syndrome: updates on pathophysiology and management in 2021.Int. J. Mol. Sci.202223278610.3390/ijms23020786
    [Google Scholar]
  6. MénégautL. LaubrietA. CrespyV. LeleuD. PilotT. Van DongenK. de BarrosJ-P.P. GautierT. PetitJ-M. ThomasC. NguyenM. SteinmetzE. MassonD. Inflammation and oxidative stress markers in type 2 diabetes patients with Advanced Carotid atherosclerosis.Cardiovasc. Diabetol.202322124810.1186/s12933‑023‑01979‑1
    [Google Scholar]
  7. Abdel-MoneimA. MahmoudR. AllamG. MahmoudB. Relationship between cytokines and metabolic syndrome components: role of pancreatic-derived factor, interleukin-37, and tumor necrosis factor-α in metabolic syndrome patients.Indian J. Clin. Biochem.2024391374610.1007/s12291‑022‑01079‑z
    [Google Scholar]
  8. GuptaL. ThomasJ. RavichandranR. SinghM. NagA. PanjiyarB.K. Inflammation in cardiovascular disease: A comprehensive review of biomarkers and therapeutic targets.Cureus2023159e4548310.7759/cureus.45483
    [Google Scholar]
  9. Król-KulikowskaM. UrbanowiczI. KepinskaM. The concentrations of interleukin-6, insulin, and glucagon in the context of obesity and type 2 diabetes and single nucleotide polymorphisms in IL6 and INS genes.J. Obes.2024202411310.1155/2024/7529779
    [Google Scholar]
  10. MankameA.R. SandersK.E. CardenasJ.C. Time-dependent changes in proinflammatory mediators are associated with trauma-related venous thromboembolism.Shock202360563764510.1097/SHK.0000000000002216
    [Google Scholar]
  11. ZahediA.S. DaneshpourM.S. AkbarzadehM. HedayatiM. AziziF. ZarkeshM. Association of baseline and changes in adiponectin, homocysteine, high-sensitivity C-reactive protein, interleukin-6, and interleukin-10 levels and metabolic syndrome incidence: Tehran lipid and glucose study.Heliyon202399e1991110.1016/j.heliyon.2023.e19911
    [Google Scholar]
  12. KoshtaK. ChauhanA. SinghS. SrivastavaV. Prenatal arsenic exposure alters EZH2-H3K27me3 occupancy at TNF-α promoter leading to insulin resistance and metabolic syndrome in a mouse model.Environ. Int.202419010892910.1016/j.envint.2024.108929
    [Google Scholar]
  13. WangZ. DengC. ZhengY. Involvement of circRNAs in proinflammatory cytokines-mediated β-Cell dysfunction.Mediators Inflamm.2021202111010.1155/2021/5566453
    [Google Scholar]
  14. JavaidH.M.A. KoE. JooE.J. KwonS.H. ParkJ.H. ShinS. ChoK.W. HuhJ.Y. TNFα-induced NLRP3 inflammasome mediates adipocyte dysfunction and activates macrophages through adipocyte-derived lipocalin 2.Metabolism202314215552710.1016/j.metabol.2023.155527
    [Google Scholar]
  15. LiuC. LeiS. CaiT. ChengY. BaiJ. FuW. HuangM. Inducible nitric oxide synthase activity mediates TNF-α-induced endothelial cell dysfunction.Am. J. Physiol. Cell Physiol.20233253C780C79510.1152/ajpcell.00153.2023
    [Google Scholar]
  16. LitteralV. MigliozziR. MetzgerD. McPhersonC. SaldanhaR. Engineering a cortisol sensing enteric probiotic.ACS Biomater. Sci. Eng.2023995163517510.1021/acsbiomaterials.2c01300
    [Google Scholar]
  17. RathishD. RajapakseR.P.V.J. WeerakoonK.G.A.D. The role of cortisol in the association of canine-companionship with blood pressure, glucose, and lipids: A systematic review.High Blood Press. Cardiovasc. Prev.202128544745510.1007/s40292‑021‑00469‑3
    [Google Scholar]
  18. SchettiniM.A.S. PassosR.F.N. KoikeB.D.V. Shift work and metabolic syndrome updates: A systematic review.Sleep Sci.202316223724710.1055/s‑0043‑1770798
    [Google Scholar]
  19. GucenmezS. YildizP. DondericiO. SerterR. The effect of testosterone level on metabolic syndrome: A cross-sectional study.Hormones (Athens)202323116316910.1007/s42000‑023‑00507‑w
    [Google Scholar]
  20. Di LorenzoM. CacciapuotiN. LonardoM.S. NastiG. GautieroC. BelfioreA. GuidaB. ChiurazziM. Pathophysiology and nutritional approaches in polycystic ovary syndrome (PCOS): A comprehensive review.Curr. Nutr. Rep.202312352754410.1007/s13668‑023‑00479‑8
    [Google Scholar]
  21. Schneider-MatykaD. CybulskaA.M. SzkupM. PilarczykB. PanczykM. Tomza-MarciniakA. GrochansE. Selenium as a predictor of metabolic syndrome in middle age women.Aging (Albany NY)20231561734174710.18632/aging.204590
    [Google Scholar]
  22. RuanQ. YuanL. GaoS. JiX. ShaoW. MaJ. JiangD. Development of ZnO /selenium nanoparticles embedded chitosan-based anti-bacterial wound dressing for potential healing ability and nursing care after paediatric fracture surgery.Int. Wound J.20232061819183110.1111/iwj.13947
    [Google Scholar]
  23. DanciuA.M. GhiteaT.C. BungauA.F. VesaC.M. The relationship between oxidative stress, selenium, and cumulative risk in metabolic syndrome.In Vivo20233762877288710.21873/invivo.13406
    [Google Scholar]
  24. LeiL. ZhangF. HuangJ. YangX. ZhouX. YanH. ChenC. ZhengS. SiL. JoseP.A. ZengC. YangJ. Selenium deficiency causes hypertension by increasing renal AT1 receptor expression via GPx1/H2O2/NF-κB pathway.Free Radic. Biol. Med.2023200597210.1016/j.freeradbiomed.2023.02.021
    [Google Scholar]
  25. FontenelleL.C. Cardoso de AraújoD.S. da Cunha SoaresT. Clímaco CruzK.J. HenriquesG.S. MarreiroD.N. Nutritional status of selenium in overweight and obesity: A systematic review and meta-analysis.Clin. Nutr.202241486288410.1016/j.clnu.2022.02.007
    [Google Scholar]
  26. AlharithyM. AlafifN. Association of selenium intake and selenium concentrations with risk of type 2 diabetes in adults: A narrative review.Metabolites202313676710.3390/metabo13060767
    [Google Scholar]
  27. TomalA. Szłapka-KosarzewskaJ. MironiukM. MichalakI. MaryczK. Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions improves insulin sensitivity and reduces systemic inflammation in equine metabolic affected horses.Front. Endocrinol. (Lausanne)202415138284410.3389/fendo.2024.1382844
    [Google Scholar]
  28. BertinatoJ. GriffinP. A low chromium diet increases body fat, energy intake and circulating triglycerides and insulin in male and female rats fed a moderately high-fat, high-sucrose diet from peripuberty to young adult age.PLoS One2023181e028101910.1371/journal.pone.0281019
    [Google Scholar]
  29. XiaJ. YuJ. XuH. ZhouY. LiH. YinS. XuD. WangY. XiaH. LiaoW. WangS. SunG. Comparative effects of vitamin and mineral supplements in the management of type 2 diabetes in primary care: A systematic review and network meta-analysis of randomized controlled trials.Pharmacol. Res.202318810664710.1016/j.phrs.2023.106647
    [Google Scholar]
  30. HiltonC. SabaratnamR. DrakesmithH. KarpeF. Iron, glucose and fat metabolism and obesity: An intertwined relationship.Int. J. Obes.202347755456310.1038/s41366‑023‑01299‑0
    [Google Scholar]
  31. GuoT. YuY. YanW. ZhangM. YiX. LiuN. CuiX. WeiX. SunY. WangZ. ShangJ. CuiW. ChenL. Erythropoietin ameliorates cognitive dysfunction in mice with type 2 diabetes mellitus via inhibiting iron overload and ferroptosis.Exp. Neurol.202336511441410.1016/j.expneurol.2023.114414
    [Google Scholar]
  32. AugustoS.N. MartensP. Heart failure-related iron deficiency anemia pathophysiology and laboratory diagnosis.Curr. Heart Fail. Rep.202320537438110.1007/s11897‑023‑00623‑z
    [Google Scholar]
  33. Escobedo-MongeM.F. BarradoE. Parodi-RománJ. Escobedo-MongeM.A. Torres-HinojalM.C. Marugán-MiguelsanzJ.M. Copper/zinc ratio in childhood and adolescence: A review.Metabolites20231318210.3390/metabo13010082
    [Google Scholar]
  34. ZouS.F. JiangB. WanR. HuangY. The adverse association of animal zinc intake with cardio-cerebrovascular and metabolic risk factors.Int. J. Cardio. Cardiovas. Risk202320200231
    [Google Scholar]
  35. OlechnowiczJ. TinkovA. SkalnyA. SuliburskaJ. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism.J. Physiol. Sci.2018681193110.1007/s12576‑017‑0571‑7
    [Google Scholar]
  36. WuY. XuG. BaiR. YuP. HeZ. ChenM. HuY. JiangT. YangY. LiuD. MeiY. Association between circulating zinc levels and risk factors of metabolic syndrome: Insights from a bi-directional mendelian randomization analysis and cross-sectional study.Biol. Trace Elem. Res.2023202730513061
    [Google Scholar]
  37. LuC.W. LeeY.C. KuoC.S. ChiangC.H. ChangH.H. HuangK.C. Association of serum levels of zinc, copper, and iron with risk of metabolic syndrome.Nutrients202113254810.3390/nu13020548
    [Google Scholar]
  38. ChenC. ZhouQ. YangR. WuZ. YuanH. ZhangN. ZhiM. ZhangY. NiX. WangZ. GaoD. ZhuX. CaiJ. YangZ. SunL. Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011–2014).Ecotoxicol. Environ. Saf.202121811229510.1016/j.ecoenv.2021.112295
    [Google Scholar]
  39. WenW.L. WangC.W. WuD.W. ChenS.C. HungC.H. KuoC.H. Associations of heavy metals with metabolic syndrome and anthropometric indices.Nutrients2020129266610.3390/nu12092666
    [Google Scholar]
  40. OliveriV. Unveiling the effects of copper ions in the aggregation of amyloidogenic proteins.Molecules20232818644610.3390/molecules28186446
    [Google Scholar]
  41. Villatoro-SantosC.R. Ramirez-ZeaM. VillamorE. Nine mesoamerican countries metabolic syndrome (NiMeCoMeS) study group. Plasma copper and metabolic syndrome in mesoamerican children and their parents.Biol. Trace Elem. Res.202420216
    [Google Scholar]
  42. GodosJ. ZappalàG. BernardiniS. GiambiniI. Bes-RastrolloM. Martinez-GonzalezM. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies.Int. J. Food Sci. Nutr.201768213814810.1080/09637486.2016.1221900
    [Google Scholar]
  43. Castilla-OjoN. Turkson-OcranR.A. ConlinP.R. AppelL.J. MillerE.R.III JuraschekS.P. Effects of the DASH diet and losartan on serum urate among adults with hypertension: Results of a randomized trial.J. Clin. Hypertens. (Greenwich)2023251091592210.1111/jch.14721
    [Google Scholar]
  44. RooholahzadeganF. ArefhosseiniS. TutunchiH. BadaliT. KhoshbatenM. Ebrahimi-MameghaniM. The effect of DASH diet on glycemic response, meta-inflammation and serum LPS in obese patients with NAFLD: A double-blind controlled randomized clinical trial.Nutr. Metab. (Lond.)20232011110.1186/s12986‑023‑00733‑4
    [Google Scholar]
  45. KenmoueM.F.D. NgahaW.D. FombangE.N. PahaneM.M. SimeuS. Assessing the effectiveness of a DASH diet in hypertensive patients attending the Ngaoundere Regional Hospital – Cameroon: A case–control study.J. Nutr. Sci.202312e8410.1017/jns.2023.67
    [Google Scholar]
  46. TheodoridisX. ChourdakisM. ChrysoulaL. ChroniV. TirodimosI. DiplaK. GkaliagkousiE. TriantafyllouA. Adherence to the DASH diet and risk of hypertension: A systematic review and meta-analysis.Nutrients20231514326110.3390/nu15143261
    [Google Scholar]
  47. WeiL. FanJ. DongR. ZhangM. JiangY. ZhaoQ. ZhaoG. ChenB. LiJ. LiuS. The effect of dietary pattern on metabolic syndrome in a suburban population in shanghai, china.Nutrients2023159218510.3390/nu15092185
    [Google Scholar]
  48. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.118661
    [Google Scholar]
  49. JingT. ZhangS. BaiM. ChenZ. GaoS. LiS. ZhangJ. Effect of dietary approaches on glycemic control in patients with type 2 diabetes: A systematic review with network meta-analysis of randomized trials.Nutrients20231514315610.3390/nu15143156
    [Google Scholar]
  50. GardemannC. KnowlesS. MarquardtT. Managing type 1 diabetes mellitus with a ketogenic diet.Endocrinol. Diabetes Metab. Case Rep.20232023323000810.1530/EDM‑23‑0008
    [Google Scholar]
  51. ZhangJ. ChenB. ZouK. Effect of ketogenic diet on exercise tolerance and transcriptome of gastrocnemius in mice.Open Life Sci.20231812022057010.1515/biol‑2022‑0570
    [Google Scholar]
  52. ZhuH. BiD. ZhangY. KongC. DuJ. WuX. WeiQ. QinH. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations.Signal Transduct. Target. Ther.2022711110.1038/s41392‑021‑00831‑w
    [Google Scholar]
  53. TremblayA. ClinchampsM. PereiraB. CourteixD. LesourdB. ChapierR. ObertP. VinetA. WaltherG. ChaplaisE. BagheriR. BakerJ.S. ThivelD. DrapeauV. DutheilF. Dietary fibres and the management of obesity and metabolic syndrome: the RESOLVE study.Nutrients20201210291110.3390/nu12102911
    [Google Scholar]
  54. AssiM.J. PoursalehiD. TiraniS.A. ShahdadianF. HajhashemyZ. MokhtariE. MohammadiS. SaneeiP. Legumes and nuts intake in relation to metabolic health status, serum brain derived neurotrophic factor and adropin levels in adults.Sci. Rep.20231311645510.1038/s41598‑023‑43855‑8
    [Google Scholar]
  55. CamposS.B. OliveiraF.J.G. SalgaçoM.K. JesusM.H.D. EgeaM.B. Effects of peanuts and pistachios on gut microbiota and metabolic syndrome: A review.Foods20231224444010.3390/foods12244440
    [Google Scholar]
  56. KimM.H. YunK.E. KimJ. ParkE. ChangY. RyuS. KimH-L. KimH-N. Gut microbiota and metabolic health among overweight and obese individuals.Sci. Rep.20201011941710.1038/s41598‑020‑76474‑8
    [Google Scholar]
  57. AntonyM.A. ChowdhuryA. EdemD. RajR. NainP. JoglekarM. VermaV. KantR. Gut microbiome supplementation as therapy for metabolic syndrome.World J. Diabetes202314101502151310.4239/wjd.v14.i10.1502
    [Google Scholar]
  58. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body.Front. Immunol.20211257838610.3389/fimmu.2021.578386
    [Google Scholar]
  59. BrownP.D.S. KetterN. Vis-DunbarM. SakakibaraB.M. Clinical effects of Emblica officinalis fruit consumption on cardiovascular disease risk factors: a systematic review and meta-analysis.BMC Complement. Med. Ther.202323119010.1186/s12906‑023‑03997‑8
    [Google Scholar]
  60. SetayeshL. HaghighatN. RasaeiN. RezaeiM. CasazzaK. NaderyM. yamraliI. ZamaniM. AsbaghiO. The impact of Emblica Officinalis (Amla) on lipid profile, glucose, and C-reactive protein: A systematic review and meta-analysis of randomized controlled trials.Diabetes Metab. Syndr.202317310272910.1016/j.dsx.2023.102729
    [Google Scholar]
  61. ParnamiM. VarmaK. Effect of Murraya koenigii (curry leaves) powder supplementation on anthropometric and body composition parameters of hypercholesterolemic urban women: A randomized control trial.Int. J. Adv. Sci. Res.202011
    [Google Scholar]
  62. MaY.G. LiangL. ZhangY.B. WangB.F. BaiY.G. DaiZ.J. XieM.J. WangZ.W. Berberine reduced blood pressure and improved vasodilation in diabetic rats.J. Mol. Endocrinol.201759319120410.1530/JME‑17‑0014
    [Google Scholar]
  63. Pérez-RubioK.G. González-OrtizM. Martínez-AbundisE. Robles-CervantesJ.A. Espinel-BermúdezM.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion.Metab. Syndr. Relat. Disord.201311536636910.1089/met.2012.0183
    [Google Scholar]
  64. Di FolcoU. PollakovaD. De FalcoD. NardoneM.R. TubiliF. TubiliC. Effects of a nutraceutical multicompound including bergamot (Citrus Bergamia Risso) juice on metabolic syndrome: A pilot study.Med. J. Nutrition Metab.201811211912610.3233/MNM‑17186
    [Google Scholar]
  65. CaiY. XingG. ShenT. ZhangS. RaoJ. ShiR. Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: A randomized, double-blind, placebo-controlled trial.Lipids Health Dis.201716125110.1186/s12944‑017‑0640‑1
    [Google Scholar]
  66. HuM. ZengW. TomlinsonB. Evaluation of a crataegus-based multiherb formula for dyslipidemia: A randomized, double-blind, placebo-controlled clinical trial.Evid.-Based Compl. Altern. Med.2014201436574210.1155/2014/365742
    [Google Scholar]
  67. Alinejad-MofradS. FoadoddiniM. SaadatjooS.A. ShayestehM. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial.J. Diabetes Metab. Disord.20151412210.1186/s40200‑015‑0137‑2
    [Google Scholar]
  68. ChoudharyM. KochharA. SanghaJ. Hypoglycemic and hypolipidemic effect of Aloe vera L. in non-insulin dependent diabetics.J. Food Sci. Technol.2014511909610.1007/s13197‑011‑0459‑0
    [Google Scholar]
  69. MorovatiA. PourghassemG.B. SarbakhshP. Effects of cumin (Cuminum cyminum L.) essential oil supplementation on metabolic syndrome components: A randomized, triple-blind, placebo-controlled clinical trial.Phytother. Res.201933123261326910.1002/ptr.6500
    [Google Scholar]
  70. TaghizadehM. MemarzadehM.R. AsemiZ. EsmaillzadehA. Effect of the Cumin cyminum L. intake on weight loss, metabolic profiles and biomarkers of oxidative stress in overweight subjects: a randomized double-blind placebo-controlled clinical trial.Ann. Nutr. Metab.2015662-311712410.1159/000373896
    [Google Scholar]
  71. TaghizadehM. MemarzadehM.R. AbediF. SharifiN. KaramaliF. FakhriehK.Z. AsemiZ. The effect of Cumin cyminum L. plus lime administration on weight loss and metabolic status in overweight subjects: a randomized double-blind placebo-controlled clinical trial.Iran. Red. Crescent Med. J.2016188e3421210.5812/ircmj.34212
    [Google Scholar]
  72. JafariS. SattariR. GhavamzadehS. Evaluation the effect of 50 and 100 mg doses of Cuminum cyminum essential oil on glycemic indices, insulin resistance and serum inflammatory factors on patients with diabetes type II: A double-blind randomized placebo-controlled clinical trial.J. Tradit. Complement. Med.20177333233810.1016/j.jtcme.2016.08.004
    [Google Scholar]
  73. SeungK. OkuboT. LekhJ. TakakoY. The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model.Br. J. Nutr.2009103502512
    [Google Scholar]
  74. BuchineniM. KudagiB.L. MohanP.R. HarithaM. AnjaniD.N. Hypolipidemic activity of Murraya koenigii in alloxan induced diabetic rats.J. Pharm. Innov.201655, Part B101
    [Google Scholar]
  75. EkohS.N. AkubugwoE.I. UdeV.C. EdwinN. Anti-hyperglycemic and anti-hyperlipidemic effect of spices (Thymus vulgaris, Murraya koenigii, Ocimum gratissimum and Piper guineense) in alloxan-induced diabetic rats.Int. J. Biosci.201442179187
    [Google Scholar]
  76. SahaA. MazumderS. An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice.Food Funct.20134342042510.1039/C2FO30193H
    [Google Scholar]
  77. PhatakR.S. KhanwelkarC.C. MatuleS.M. DatkhileK.D. HendreA.S. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats.Pharmacogn. Mag.2019114836841
    [Google Scholar]
  78. El-AminM. VirkP. ElobeidM.A. AlmarhoonZ.M. HassanZ.K. OmerS.A. MerghaniN.M. DaghestaniM.H. Al-OlayanE.M. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats.Pak. J. Pharm. Sci.2013262359365
    [Google Scholar]
  79. HouD. ZhaoQ. YousafL. KhanJ. XueY. ShenQ. Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet.J. Funct. Foods20206410368710.1016/j.jff.2019.103687
    [Google Scholar]
  80. YaoY. YangX. TianJ. LiuC. ChengX. RenG. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.).J. Agric. Food Chem.201361348104810910.1021/jf401812z
    [Google Scholar]
  81. KapravelouG. MartínezR. NebotE. López-JuradoM. ArandaP. ArrebolaF. CantareroS. GalisteoM. PorresJ. The combined intervention with germinated Vigna radiata and aerobic interval training protocol is an effective strategy for the treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and other alterations related to the metabolic syndrome in Zucker rats.Nutrients20179777410.3390/nu9070774
    [Google Scholar]
  82. PalacioT.L.N. SiqueiraJ.S. de PaulaB.H. RegoR.M.P. VieiraT.A. BaronG. AltomareA. FerronA.J.T. AldiniG. KanoH.T. CorreaC.R. Bergamot (Citrus bergamia) leaf extract improves metabolic, antioxidant and anti-inflammatory activity in skeletal muscles in a metabolic syndrome experimental model.Int. J. Food Sci. Nutr.2023741647110.1080/09637486.2022.2154328
    [Google Scholar]
  83. SiqueiraJ.S. Nakandakare-MaiaE.T. VieiraT.A. PalacioT.L.N. GrandiniN.A. BelinM.A.F. NaiG.A. MoretoF. AltomareA. BaronG. AldiniG. Francisqueti-FerronF.V. CorreaC.R. Effect of bergamot leaves (Citrus bergamia) in the Crosstalk between adipose tissue and liver of diet-induced obese rats.Livers20233225827010.3390/livers3020017
    [Google Scholar]
  84. OmóbòwáléT. OyagbemiA. OgunpoluB. Ola-DaviesO. OlukunleJ. AsenugaE. AjibadeT. AdejumobiO. AfolabiJ. FalayiO. AshafaA. AdedapoA. YakubuM. Antihypertensive effect of polyphenol-rich fraction of Azadirachta indica on Nω-Nitro-L-arginine methyl ester-induced hypertension and cardiorenal dysfunction.Drug Res.2019691122210.1055/a‑0635‑0638
    [Google Scholar]
  85. GautamM. GangwarM. SinghS. GoelR. Effects of Azardirachta indica on vascular endothelial growth factor and cytokines in diabetic deep wound.Planta Med.201581971372110.1055/s‑0035‑1545917
    [Google Scholar]
  86. MukherjeeA. SenguptaS. Indian medicinal plants known to contain intestinal glucosidase inhibitors also inhibit pancreatic lipase activity—An ideal situation for obesity control by herbal drugs.Indian J. Biotechnol.2013123239
    [Google Scholar]
  87. LiT. LiS. DongY. ZhuR. LiuY. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet.Food Chem.201414533534110.1016/j.foodchem.2013.08.036
    [Google Scholar]
  88. YooJ.H. LiuY. KimH.S. Hawthorn fruit extract elevates expression of Nrf2/HO-1 and improves lipid profiles in ovariectomized rats.Nutrients20168528310.3390/nu8050283
    [Google Scholar]
  89. AroraM.K. SarupY. TomarR. SinghM. KumarP. Amelioration of diabetes-induced diabetic nephropathy by Aloe vera: Implication of oxidative stress and hyperlipidemia.J. Diet. Suppl.201916222724410.1080/19390211.2018.1449159
    [Google Scholar]
  90. PothurajuR. SharmaR.K. KavadiP.K. ChagalamarriJ. JangraS. BhakriG. DeS. Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice.Benef. Microbes20167337538610.3920/BM2015.0083
    [Google Scholar]
  91. VermaP. KumarV. RathoreB. SinghR.K. MahdiA.A. IndiaP. Hypolipidemic activity of Aloe vera in hyperlipidemic rats.Int. J. Pharmacogn.20163419600
    [Google Scholar]
  92. FatemehY. SiassiF. RahimiA. KoohdaniF. DoostanF. QorbaniM. SotoudehG. The effect of cardamom supplementation on serum lipids, glycemic indices and blood pressure in overweight and obese pre-diabetic women: A randomized controlled trial.J. Diabetes Metab. Disord.20171614010.1186/s40200‑017‑0320‑8
    [Google Scholar]
  93. NagashreeS. ArchanaK.K. SrinivasP. SrinivasanK. SowbhagyaH.B. Anti-hypercholesterolemic influence of the spice cardamom (Elettaria cardamomum) in experimental rats.J. Sci. Food Agric.201797103204321010.1002/jsfa.8165
    [Google Scholar]
  94. AghasiM. KoohdaniF. QorbaniM. Nasli-EsfahaniE. Ghazi-ZahediS. KhoshamalH. KeshavarzA. SotoudehG. Beneficial effects of green cardamom on serum SIRT1, glycemic indices and triglyceride levels in patients with type 2 diabetes mellitus: A randomized double-blind placebo controlled clinical trial.J. Sci. Food Agric.20199983933394010.1002/jsfa.9617
    [Google Scholar]
  95. Daneshi-MaskooniM. KeshavarzS.A. QorbaniM. MansouriS. AlavianS.M. Badri-FarimanM. Jazayeri-TehraniS.A. SotoudehG. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: A double-blind randomized placebo-controlled clinical trial.Nutr. Metab.20181516310.1186/s12986‑018‑0297‑4
    [Google Scholar]
  96. Brahma NaiduP. UddandraoV.V.S. Ravindar NaikR. SureshP. MerigaB. BegumM.S. PandiyanR. SaravananG. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats.Mol. Cell. Endocrinol.201641913914710.1016/j.mce.2015.10.007
    [Google Scholar]
  97. SonM.J. MiuraY. YagasakiK. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice.Cytotechnology201567464165210.1007/s10616‑014‑9730‑3
    [Google Scholar]
  98. JungH. WeeJ.H. KimK. SungH. ShinH. Effect of onion (Allium cepa) ultra-high pressure processing and hot water extracts on the serum cholesterol level in high cholesterol-fed rats.Food Sci. Biotechnol.201524128729410.1007/s10068‑015‑0038‑7
    [Google Scholar]
  99. AriasN. PicóC. TeresaM.M. OliverP. MirandaJ. PalouA. PortilloM.P. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet.Obesity201725111112110.1002/oby.21706
    [Google Scholar]
  100. KhashanM.H. Al-TurfiZ.S.M. Effect of alcoholic extract of Brassica oleracea l. var. capitata plant leaves on glucose level and antioxidant activity in alloxan induced diabetic rats.J. Med. Res.2017111923
    [Google Scholar]
  101. NaowabootJ. NannaU. ChularojmontriL. TingpejP. WattanapitayakulS. Effects of Brassica oleracea extract on impaired glucose and lipid homeostasis in high-fat diet-induced obese mice.Asian Pac. J. Trop. Biomed.201992808410.4103/2221‑1691.250859
    [Google Scholar]
  102. VeberB. CamargoA. DalmagroA.P. BondeH.L.P. MagroD.D.D. LimaD.D.D. ZeniA.L.B. Red cabbage (Brassica oleracea L.) extract reverses lipid oxidative stress in rats.An. Acad. Bras. Cienc.2020921e2018059610.1590/0001‑3765202020180596
    [Google Scholar]
  103. SharefM.A. AljamaliS. JwadM. Evaluation for the effectiveness of Red Cabbage extract against hepatotoxicity and nephrotoxicity induced by gentamicin antibiotic in male Albino rats.Int. J. Pharm. Res201911116361647
    [Google Scholar]
  104. MartinsT. LeiteR. MatosA. F. SoaresJ. PiresM.J. PintoM.D.L. NeuparthM.J. SequeiraA.R. FelixL. VenancioC. AntunesL.M. Beneficial effects of broccoli (Brassica oleracea var italica) by-products in diet-induced obese mice.in vivo202236521732185
    [Google Scholar]
  105. HusseinA.A. AssadH.C. RabeeaI.S. Antihyperlipidemic, antioxidant and anti-inflammatory effects of Ginkgo biloba in high cholesterol fed rabbits.J. Pharm. Sci. Res.201791121632167
    [Google Scholar]
  106. LuoL. LiY. WangD. ZhaoY. WangY. LiF. FangJ. ChenH. FanS. HuangC. Ginkgolide B lowers body weight and ameliorates hepatic steatosis in high-fat diet-induced obese mice correlated with pregnane X receptor activation.RSC Advances2017760378583786610.1039/C7RA05621D
    [Google Scholar]
  107. Abdel-ZaherA.O. FarghalyH.S.M. El-RefaiyA.E.M. Abd-EldayemA.M. Protective effect of the standardized extract of ginkgo biloba (EGb761) against hypertension with hypercholesterolemia-induced renal injury in rats: Insights in the underlying mechanisms.Biomed. Pharmacother.20179594495510.1016/j.biopha.2017.08.078
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303316445241108100017
Loading
/content/journals/emiddt/10.2174/0118715303316445241108100017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test