Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Obesity and associated health impairments are proven to exhibit multifocal health disorders along with increasing co-morbidity. Underlying obesity pathology is linked up with almost every major disease, which may increase the risk of heart disease, hypertension, diabetes, cancer, osteoarthritis, . The prevalence of overweight and obesity is on the rise around the world, which enormously affects the life span of individuals. Due to the foggier nature of the underlying pathology, the efficacy is questionable for conventional treatments. The traditional therapy of obesity may involve synthetic moieties and surgical procedures, which have many harmful side effects and chances of recurrent severity. Scientists are continuously focusing on prophylactic remedies alongside maintaining a proper lifestyle. In that context, nature always helped with traditional medications. As per folklore medicine reports, many plants have been used to treat obesity and its associated complications. This review compiles a vast array of datasets, including the impact of obesity and the need for the introduction of phytochemicals in place of conventional pharmacotherapies, the impact of phytochemicals along with the reported mechanisms of action, recent clinical trial reports, and recently explored dietary supplements. The primary objective of this review paper is to chart the future trajectory of phytochemical research for metabolic disorders, establishing a foundational framework for future investigations to build upon.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303316634240822073810
2024-09-23
2025-10-08
Loading full text...

Full text loading...

References

  1. BovoliniA. GarciaJ. AndradeM.A. DuarteJ.A. Metabolic syndrome pathophysiology and predisposing factors.Int. J. Sports Med.202142319921410.1055/a‑1263‑0898 33075830
    [Google Scholar]
  2. LinX. LiH. Obesity: Epidemiology, pathophysiology, and therapeutics.Front. Endocrinol. (Lausanne)20211270697810.3389/fendo.2021.706978 34552557
    [Google Scholar]
  3. HillsA.P. AndersenL.B. ByrneN.M. Physical activity and obesity in children.Br. J. Sports Med.2011451186687010.1136/bjsports‑2011‑090199 21836171
    [Google Scholar]
  4. CaballeroB. Humans against obesity: Who Will Win?Adv. Nutr.2019101S4S910.1093/advances/nmy055 30721956
    [Google Scholar]
  5. LemamshaH. RandhawaG. PapadopoulosC. Prevalence of overweight and obesity among libyan men and women.BioMed Res. Int.2019201911610.1155/2019/8531360 31392214
    [Google Scholar]
  6. KolbH. Obese visceral fat tissue inflammation: From protective to detrimental?BMC Med.202220149410.1186/s12916‑022‑02672‑y 36575472
    [Google Scholar]
  7. GearhardtA.N. SchulteE.M. Is food addictive? A review of the science.Annu. Rev. Nutr.202141138741010.1146/annurev‑nutr‑110420‑111710 34152831
    [Google Scholar]
  8. RubanA. StoenchevK. AshrafianH. TeareJ. Current treatments for obesity.Clin. Med. (Lond.)201919320521210.7861/clinmedicine.19‑3‑205 31092512
    [Google Scholar]
  9. KennedyD.O. WightmanE.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function.Adv. Nutr.201121325010.3945/an.110.000117 22211188
    [Google Scholar]
  10. MayasankaravalliC. DeepikaK. EstherL.D. AgadaR. ThagrikiD. GovindasamyC. ChinnaduraiV. Othman GatarO.M. KhusroA. KimY.O. KimH.J. Profiling the phyto-constituents of Punica granatum fruits peel extract and accessing its in vitro antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme inhibitory properties.Saudi J. Biol. Sci.202027123228323410.1016/j.sjbs.2020.09.046 33304128
    [Google Scholar]
  11. TangG.Y. MengX. GanR.Y. ZhaoC.N. LiuQ. FengY.B. LiS. WeiX.L. AtanasovA.G. CorkeH. LiH.B. Health functions and related molecular mechanisms of tea components: An Update Review.Int. J. Mol. Sci.20192024619610.3390/ijms20246196 31817990
    [Google Scholar]
  12. CobosÁ. DíazO. ‘Superfoods’: Reliability of the information for consumers available on the web.Foods202312354610.3390/foods12030546 36766074
    [Google Scholar]
  13. Waheed JanabiA.H. KambohA.A. SaeedM. XiaoyuL. BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; Alagawany, M.; Lv, H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases.Iran. J. Basic Med. Sci.202023214015310.22038/IJBMS.2019.35125.8353 32405356
    [Google Scholar]
  14. ZhangY. GuY. JiangJ. CuiX. ChengS. LiuL. HuangZ. LiaoR. ZhaoP. YuJ. WangJ. JiaY. JinW. ZhouF. Stigmasterol attenuates hepatic steatosis in rats by strengthening the intestinal barrier and improving bile acid metabolism.NPJ Sci. Food2022613810.1038/s41538‑022‑00156‑0 36030278
    [Google Scholar]
  15. HosseiniA. RazaviB.M. BanachM. HosseinzadehH. Quercetin and metabolic syndrome: A review.Phytother. Res.202135105352536410.1002/ptr.7144 34101925
    [Google Scholar]
  16. NehligA. Interindividual differences in caffeine metabolism and factors driving caffeine consumption.Pharmacol. Rev.201870238441110.1124/pr.117.014407 29514871
    [Google Scholar]
  17. KhateebS. AlbalawiA. AlkhedaideA. Diosgenin modulates oxidative stress and inflammation in high-fat diet-induced obesity in mice.Diabetes Metab. Syndr. Obes.2022151589159610.2147/DMSO.S355677 35637860
    [Google Scholar]
  18. WhiteO. RoederN. BlumK. EidenR.D. ThanosP.K. Prenatal effects of nicotine on obesity risks: A narrative review.Int. J. Environ. Res. Public Health20221915947710.3390/ijerph19159477 35954830
    [Google Scholar]
  19. YuanG. TanM. ChenX. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice.Food Funct.202112177897790810.1039/D1FO01152A 34241611
    [Google Scholar]
  20. WangS. Moustaid-MoussaN. ChenL. MoH. ShastriA. SuR. BapatP. KwunI. ShenC.L. Novel insights of dietary polyphenols and obesity.J. Nutr. Biochem.201425111810.1016/j.jnutbio.2013.09.001
    [Google Scholar]
  21. SuT. HuangC. YangC. JiangT. SuJ. ChenM. FatimaS. GongR. HuX. BianZ. LiuZ. KwanH.Y. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity.Pharmacol. Res.202015210458610.1016/j.phrs.2019.104586 31877350
    [Google Scholar]
  22. SaravananM. PandikumarP. SaravananS. ToppoE. PazhanivelN. IgnacimuthuS. Lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol on 3T3-L1 adipocytes and high fat and fructose diet induced obese C57/BL6J mice.Eur. J. Pharmacol.201474071472110.1016/j.ejphar.2014.06.004 24952133
    [Google Scholar]
  23. HayakawaS. OhishiT. MiyoshiN. OishiY. NakamuraY. IsemuraM. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid.Molecules20202519455310.3390/molecules25194553
    [Google Scholar]
  24. JayaramanS. DevarajanN. RajagopalP. BabuS. GanesanS.K. VeeraraghavanV.P. PalanisamyC.P. CuiB. PeriyasamyV. ChandrasekarK. β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats.Molecules2021267210110.3390/molecules26072101 33917607
    [Google Scholar]
  25. LeeD. LeeJ.H. KimB.H. LeeS. KimD.W. KangK.S. Phytochemical combination (p-Synephrine, p-Octopamine hydrochloride, and hispidulin) for improving obesity in obese mice induced by high-fat diet.Nutrients20221410216410.3390/nu14102164 35631305
    [Google Scholar]
  26. Pérez-TorresI. Castrejón-TéllezV. SotoM.E. Rubio-RuizM.E. Manzano-PechL. Guarner-LansV. Oxidative stress, plant natural antioxidants, and obesity.Int. J. Mol. Sci.2021224178610.3390/ijms22041786 33670130
    [Google Scholar]
  27. SavovaM.S. MihaylovaL.V. TewsD. WabitschM. GeorgievM.I. Targeting PI3K/AKT signaling pathway in obesity.Biomed. Pharmacother.202315911424410.1016/j.biopha.2023.114244 36638594
    [Google Scholar]
  28. TaketaniK. HoshinoS. UemuraT. GotoT. TakahashiN. TsugeN. KawadaT. An efficient purification method for quantitative determinations of protodioscin, dioscin and diosgenin in plasma of fenugreek-fed mice.J. Nutr. Sci. Vitaminol. (Tokyo)201561646547010.3177/jnsv.61.465 26875488
    [Google Scholar]
  29. SpringerM. MocoS. Resveratrol and its human metabolites-effects on metabolic health and obesity.Nutrients201911114310.3390/nu11010143 30641865
    [Google Scholar]
  30. LinC. ChenJ. HuM. ZhengW. SongZ. QinH. Sesamol promotes browning of white adipocytes to ameliorate obesity by inducing mitochondrial biogenesis and inhibition mitophagy via β3-AR/PKA signaling pathway.Food Nutr. Res.2021106510.29219/fnr.v65.7577
    [Google Scholar]
  31. TangS. FangC. LiuY. TangL. XuY. Anti-obesity and anti-diabetic effect of ursolic acid against streptozotocin/high fat induced obese in diabetic rats.J. Oleo Sci.202271228930010.5650/jos.ess21258 35034940
    [Google Scholar]
  32. LeeS.J. JiaY. The effect of bioactive compounds in tea on lipid metabolism and obesity through regulation of peroxisome proliferator-activated receptors.Curr. Opin. Lipidol.20152613910.1097/MOL.0000000000000145 25551797
    [Google Scholar]
  33. TangH. ZengQ. RenN. WeiY. HeQ. ChenM. PuP. Kaempferide improves oxidative stress and inflammation by inhibiting the TLR4/IκBα/NF-κB pathway in obese mice.Iran. J. Basic Med. Sci.202124449349810.22038/ijbms.2021.52690.11892 34094031
    [Google Scholar]
  34. PiwowarczykL. StawnyM. MlynarczykD.T. Muszalska-KolosI. GoslinskiT. JelińskaA. role of curcumin and (-)-epigallocatechin-3-O-gallate in bladder cancer treatment: A Review.Cancers (Basel)180120201207180110.3390/cancers12071801 32635637
    [Google Scholar]
  35. LeungF.W. Capsaicin as an anti-obesity drug.Prog. Drug Res.20146817117910.1007/978‑3‑0348‑0828‑6_7 24941669
    [Google Scholar]
  36. HancockA.A. BruneM.E. Assessment of pharmacology and potential anti-obesity properties of H 3 receptor antagonists/inverse agonists.Expert Opin. Investig. Drugs200514322324110.1517/13543784.14.3.223 15833055
    [Google Scholar]
  37. ZhengR. ShenH. LiJ. ZhaoJ. LuL. HuM. LinZ. MaH. TanH. HuM. LiJ. Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: Integrating network pharmacology and experimental validation in vivo.J. Ethnopharmacol.202330111582410.1016/j.jep.2022.115824 36273747
    [Google Scholar]
  38. HuangH. WeiS. WuX. ZhangM. ZhouB. HuangD. DongW. Dihydrokaempferol attenuates CCl4-induced hepatic fibrosis by inhibiting PARP-1 to affect multiple downstream pathways and cytokines.Toxicol. Appl. Pharmacol.202346411643810.1016/j.taap.2023.116438 36841340
    [Google Scholar]
  39. ZhuR. LiuH. LiuC. WangL. MaR. ChenB. LiL. NiuJ. FuM. ZhangD. GaoS. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety.Pharmacol. Res.2017122788910.1016/j.phrs.2017.05.019 28559210
    [Google Scholar]
  40. PichéM.E. TchernofA. DesprésJ.P. Obesity phenotypes, diabetes, and cardiovascular diseases.Circ. Res.2020126111477150010.1161/CIRCRESAHA.120.316101 32437302
    [Google Scholar]
  41. DiepvensK. WesterterpK.R. Westerterp-PlantengaM.S. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea.Am. J. Physiol. Regul. Integr. Comp. Physiol.20072921R77R8510.1152/ajpregu.00832.2005 16840650
    [Google Scholar]
  42. FengX. SuredaA. JafariS. MemarianiZ. TewariD. AnnunziataG. BarreaL. HassanS.T.S. ŠmejkalK. MalaníkM. SychrováA. BarrecaD. ZibernaL. MahomoodallyM.F. ZenginG. XuS. NabaviS.M. ShenA.Z. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics.Theranostics2019971923195110.7150/thno.30787 31037148
    [Google Scholar]
  43. TakicM. PokimicaB. Petrovic-OggianoG. PopovicT. Effects of dietary α-linolenic acid treatment and the efficiency of its conversion to eicosapentaenoic and docosahexaenoic acids in obesity and related diseases.Molecules20222714447110.3390/molecules27144471
    [Google Scholar]
  44. TomarM. RaoR.P. DorairajP. KoshtaA. SureshS. RafiqM. KumawatR. ParameshR.B.U. VenkateshK.V. A clinical and computational study on anti-obesity effects of hydroxycitric acid.RSC Advances2019932185781858810.1039/C9RA01345H 35547650
    [Google Scholar]
  45. BradfordP.G. Curcumin and obesity.Biofactors2013391788710.1002/biof.1074
    [Google Scholar]
  46. BarberT.M. KabischS. RandevaH.S. PfeifferA.F.H. WeickertM.O. Implications of resveratrol in obesity and insulin resistance: A state-of-the-art review.Nutrients20221414287010.3390/nu14142870 35889827
    [Google Scholar]
  47. HeidariH. BagherniyaM. MajeedM. SathyapalanT. JamialahmadiT. SahebkarA. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies.Phytother. Res.20233741462148710.1002/ptr.7737 36720711
    [Google Scholar]
  48. SodumN. KumarG. BojjaS.L. KumarN. RaoC.M. Epigenetics in NAFLD/NASH: Targets and therapy.Pharmacol. Res.202116716710548410.1016/j.phrs.2021.105484 33771699
    [Google Scholar]
  49. JinZ. GaoW. GuoF. LiaoS. HuM. YuT. YuS. ShiQ. Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity‐associated-N6-methyladenosine-acyl‐CoA synthetase long‐chain family member 4 axis.J. Neurochem.2023166232834510.1111/jnc.15871 37300304
    [Google Scholar]
  50. FuggettaM.P. ZonfrilloM. VillivàC. BonmassarE. RavagnanG. Inflammatory microenvironment and adipogenic differentiation in obesity: The inhibitory effect of theobromine in a model of human obesity in vitro.Mediators Inflamm.2019201911010.1155/2019/1515621 30804705
    [Google Scholar]
  51. López-AlmadaG. Domínguez-AvilaJ.A. Mejía-LeónM.E. Robles-SánchezM. González-AguilarG.A. Salazar-LópezN.J. Could naringenin participate as a regulator of obesity and satiety?Molecules2023283145010.3390/molecules28031450 36771113
    [Google Scholar]
  52. YangJ. LeeJ. KimY. Effect of deglycosylated rutin by acid hydrolysis on obesity and hyperlipidemia in high-fat diet-induced obese mice.Nutrients2020125153910.3390/nu12051539 32466230
    [Google Scholar]
  53. BehloulN. WuG. Genistein: A promising therapeutic agent for obesity and diabetes treatment.Eur. J. Pharmacol.20136981-3313810.1016/j.ejphar.2012.11.013 23178528
    [Google Scholar]
  54. PavlíkováN. Caffeic acid and diseases-mechanisms of action.Int. J. Mol. Sci.202224158810.3390/ijms24010588 36614030
    [Google Scholar]
  55. ZhangZ. WangJ. LinY. ChenJ. LiuJ. ZhangX. Nutritional activities of luteolin in obesity and associated metabolic diseases: An eye on adipose tissues.Crit. Rev. Food Sci. Nutr.2022202211510.1080/10408398.2022.2138257 36300856
    [Google Scholar]
  56. NaniA. MurtazaB. Sayed KhanA. KhanN.A. HichamiA. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms.Molecules202126498510.3390/molecules26040985 33673390
    [Google Scholar]
  57. JiangY. PeiJ. ZhengY. MiaoY. DuanB. HuangL. Gallic acid: A potential anti-cancer agent.Chin. J. Integr. Med.202228766167110.1007/s11655‑021‑3345‑2 34755289
    [Google Scholar]
  58. RabbaniN. ThornalleyP.J. Glyoxalase 1 modulation in obesity and diabetes.Antioxid. Redox Signal.201930335437410.1089/ars.2017.7424 29160087
    [Google Scholar]
  59. KimK.D. JungH.Y. RyuH.G. KimB. JeonJ. YooH.Y. ParkC.H. ChoiB.H. HyunC.K. KimK.T. FangS. YangS.H. KimJ.B. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK.Nutr. Metab. Cardiovasc. Dis.201929440942010.1016/j.numecd.2018.12.001 30799179
    [Google Scholar]
  60. ArisawaK. KanekoM. MatsuokaA. OzawaN. KawawaR. IshikawaT. IchiI. FujiwaraY. Piceatannol prevents obesity and fat accumulation caused by estrogen deficiency in female mice by promoting lipolysis.Nutrients2023156137410.3390/nu15061374 36986104
    [Google Scholar]
  61. BianY. LeiJ. ZhongJ. WangB. WanY. LiJ. LiaoC. HeY. LiuZ. ItoK. ZhangB. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice.J. Nutr. Biochem.20229910884010.1016/j.jnutbio.2021.108840 34419569
    [Google Scholar]
  62. MurtazaM. KhanG. AftabM.F. AfridiS.K. GhaffarS. AhmedA. HafizurR.M. WaraichR.S. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.PLoS One2017126e017891010.1371/journal.pone.0178910 28598969
    [Google Scholar]
  63. AL-IshaqR.K. OveryA.J. BüsselbergD. Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression.Biomolecules202010110510.3390/biom10010105 31936288
    [Google Scholar]
  64. RodriguesF.S. JantschJ. FragaG.F. DiasV.S. EllerS. De OliveiraT.F. GiovenardiM. GuedesR.P. Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity.Front. Nutr.202310115018910.3389/fnut.2023.1150189 36969815
    [Google Scholar]
  65. KimM. ImS. ChoY. ChoiC. SonY. KwonD. JungY.S. LeeY.H. Anti-obesity effects of soybean embryo extract and enzymatically-modified isoquercitrin.Biomolecules20201010139410.3390/biom10101394 33008006
    [Google Scholar]
  66. ZhangD. FongC. JiaZ. CuiL. YaoX. YangM. Icariin stimulates differentiation and suppresses adipocytic transdifferentiation of primary osteoblasts through estrogen receptor-mediated pathway.Calcif. Tissue Int.201699218719810.1007/s00223‑016‑0138‑2 27061090
    [Google Scholar]
  67. VasilevaL.V. SavovaM.S. TewsD. WabitschM. GeorgievM.I. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes.Food Chem. Toxicol.202114911200210.1016/j.fct.2021.112002 33476690
    [Google Scholar]
  68. DaiJ. LiangK. ZhaoS. JiaW. LiuY. WuH. LvJ. CaoC. ChenT. ZhuangS. HouX. ZhouS. ZhangX. ChenX.W. HuangY. XiaoR.P. WangY.L. LuoT. XiaoJ. WangC. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis.Proc. Natl. Acad. Sci. USA201811526E5896E590510.1073/pnas.1801745115 29891721
    [Google Scholar]
  69. LiW. ZengH. XuM. HuangC. TaoL. LiJ. ZhangT. ChenH. XiaJ. LiC. LiX. Oleanolic acid improves obesity-related inflammation and insulin resistance by regulating macrophages activation.Front. Pharmacol.20211269748310.3389/fphar.2021.697483 34393781
    [Google Scholar]
  70. ParaisoI.L. MattioL.M. Alcázar MagañaA. ChoiJ. PlagmannL.S. RedickM.A. MirandaC.L. MaierC.S. DallavalleS. KioussiC. BlakemoreP.R. StevensJ.F. Xanthohumol pyrazole derivative improves diet-induced obesity and induces energy expenditure in high-fat diet-fed mice.ACS Pharmacol. Transl. Sci.2021461782179310.1021/acsptsci.1c00161 34927010
    [Google Scholar]
  71. GuanL. GongD. YangS. ShenN. ZhangS. LiY. WuQ. YuanB. SunY. DaiN. ZhuL. ZouY. Genipin ameliorates diet‐induced obesity via promoting lipid mobilization and browning of white adipose tissue in rats.Phytother. Res.201832472373210.1002/ptr.6022 29377296
    [Google Scholar]
  72. ShangA. CaoS.Y. XuX.Y. GanR.Y. TangG.Y. CorkeH. MavumengwanaV. LiH.B. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods8070246 31284512
    [Google Scholar]
  73. KadasahS.F. RadwanM.O. Overview of ursolic acid potential for the treatment of metabolic disorders, autoimmune diseases, and cancers via nuclear receptor pathways.Biomedicines20231110284510.3390/biomedicines11102845 37893218
    [Google Scholar]
  74. HeB. NoharaK. ParkN. ParkY.S. GuilloryB. ZhaoZ. GarciaJ.M. KoikeN. LeeC.C. TakahashiJ.S. YooS.H. ChenZ. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome.Cell Metab.201623461062110.1016/j.cmet.2016.03.007 27076076
    [Google Scholar]
  75. SemwalR.B. SemwalD.K. CombrinckS. ViljoenA.M. Gingerols and shogaols: Important nutraceutical principles from ginger.Phytochemistry201511755456810.1016/j.phytochem.2015.07.012 26228533
    [Google Scholar]
  76. LiuJ. LeeJ. Salazar HernandezM.A. MazitschekR. OzcanU. Treatment of obesity with celastrol.Cell20151615999101110.1016/j.cell.2015.05.011 26000480
    [Google Scholar]
  77. QiX. SongA. MaM. WangP. ZhangX. LuC. ZhangJ. ZhengS. JinH. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non‐alcoholic fatty liver disease.Cell Prolif.2021549e1310710.1111/cpr.13107 34346124
    [Google Scholar]
  78. MurakamiA. KitazonoY. JiwajindaS. KoshimizuK. OhigashiH. Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation.Planta Med.199864431932310.1055/s‑2006‑957442 9619112
    [Google Scholar]
  79. SirotkinA.V. KolesárováA. The anti-obesity and health-promoting effects of tea and coffee.Physiol. Res.202170216116810.33549/physiolres.934674 33992045
    [Google Scholar]
  80. LeeY.M. YoonY. YoonH. ParkH.M. SongS. YeumK.J. Dietary anthocyanins against obesity and inflammation.Nutrients2017910108910.3390/nu9101089 28974032
    [Google Scholar]
  81. CarpiS. QuartaS. DocciniS. SavianoA. MariglianoN. PoliniB. MassaroM. CarluccioM.A. CalabrisoN. WabitschM. SantorelliF.M. CecchiniM. MaioneF. NieriP. ScodittiE. Tanshinone IIA and cryptotanshinone counteract inflammation by regulating gene and miRNA expression in human SGBS adipocytes.Biomolecules2023137102910.3390/biom13071029 37509065
    [Google Scholar]
  82. KohY.C. LinS.J. NagabhushanamK. HoC.T. PanM.H. The Anti‐Obesity and Anti‐Inflammatory Capabilities of Pterostilbene and its Colonic Metabolite Pinostilbene Protect against Tight Junction Disruption from Western Diet Feeding.Mol. Nutr. Food Res.20226616220014610.1002/mnfr.202200146 35751615
    [Google Scholar]
  83. IslamM.T. AliE.S. MubarakM.S. Anti‐obesity effect of plant diterpenes and their derivatives: A review.Phytother. Res.20203461216122510.1002/ptr.6602 31977122
    [Google Scholar]
  84. DeleddaA. GiordanoE. VelluzziF. FloreG. FranceschelliS. SperanzaL. RipariP. Mitochondrial Aging and Senolytic Natural Products with Protective Potential.Int. J. Mol. Sci.202223241621910.3390/ijms232416219 36555859
    [Google Scholar]
  85. NemzerB.V. Al-TaherF. YashinA. RevelskyI. YashinY. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview.Molecules2022275150310.3390/molecules27051503 35268605
    [Google Scholar]
  86. KangB. KimC.Y. HwangJ. JoK. KimS. SuhH.J. ChoiH.S. Punicalagin, a Pomegranate‐Derived Ellagitannin, Suppresses Obesity and Obesity‐Induced Inflammatory Responses via the Nrf2/Keap1 Signaling Pathway.Mol. Nutr. Food Res.20196322190057410.1002/mnfr.201900574 31444955
    [Google Scholar]
  87. AlsaggarM. BdourS. AbabnehQ. El-ElimatT. QinnaN. AlzoubiK.H. Silibinin attenuates adipose tissue inflammation and reverses obesity and its complications in diet-induced obesity model in mice.BMC Pharmacol. Toxicol.2020211810.1186/s40360‑020‑0385‑8 31973745
    [Google Scholar]
  88. ZhuR. ChenB. BaiY. MiaoT. RuiL. ZhangH. XiaB. LiY. GaoS. WangX.D. ZhangD. Lycopene in protection against obesity and diabetes: A mechanistic review.Pharmacol. Res.202015910496610.1016/j.phrs.2020.104966 32535223
    [Google Scholar]
  89. KimI.S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans.Antioxidants2021107106410.3390/antiox10071064 34209224
    [Google Scholar]
  90. Ruiz-GarcíaI. Ortíz-FloresR. BadíaR. García-BorregoA. García-FernándezM. LaraE. Martín-MontañezE. García-SerranoS. ValdésS. GonzaloM. Tapia-GuerreroM.J. Fernández-GarcíaJ.C. Sánchez-GarcíaA. Muñoz-CobosF. Calderón-CidM. El-BekayR. CovasM.I. Rojo-MartínezG. OlveiraG. Romero-ZerboS.Y. Bermúdez-SilvaF.J. Rich oleocanthal and oleacein extra virgin olive oil and inflammatory and antioxidant status in people with obesity and prediabetes. The APRIL study: A randomised, controlled crossover study.Clin. Nutr.20234281389139810.1016/j.clnu.2023.06.027 37421852
    [Google Scholar]
  91. YangY.Y. QiJ.J. JiangS.Y. YeL. Esculin ameliorates obesity-induced insulin resistance by improving adipose tissue remodeling and activating the IRS1/PI3K/AKT/GLUT4 pathway.J. Ethnopharmacol.2024319Pt 211725110.1016/j.jep.2023.117251 37778516
    [Google Scholar]
  92. LincoffA.M. Brown-FrandsenK. ColhounH.M. DeanfieldJ. EmersonS.S. EsbjergS. Hardt-LindbergS. HovinghG.K. KahnS.E. KushnerR.F. LingvayI. OralT.K. MichelsenM.M. PlutzkyJ. TornøeC.W. RyanD.H. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes.N. Engl. J. Med.2023389242221223210.1056/NEJMoa2307563 37952131
    [Google Scholar]
  93. SemwalR.B. SemwalD.K. VermaakI. ViljoenA. A comprehensive scientific overview of Garcinia cambogia.Fitoterapia201510213414810.1016/j.fitote.2015.02.012 25732350
    [Google Scholar]
  94. WangY. ChenW. ZhaoL. LiY. LiuZ. GaoH. BaiX. WangB. Obesity regulates miR‐467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC‐derived exosome LncRNA H19.J. Cell. Mol. Med.20212531712172410.1111/jcmm.16273 33471953
    [Google Scholar]
  95. MeenuM. XuB. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch.Crit. Rev. Food Sci. Nutr.201959183019303110.1080/10408398.2018.1481360 29846089
    [Google Scholar]
  96. FlattJ.P. Glycogen levels and obesity.Int. J. Obes. Relat. Metab. Disord.199620Suppl. 2S1S11 8646265
    [Google Scholar]
  97. GopanG. JoseJ. KhotK.B. BandiwadekarA. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review.Int. J. Biol. Macromol.202324412537410.1016/j.ijbiomac.2023.125374 37330096
    [Google Scholar]
  98. HuangJ. WuQ. LinZ. LiuS. SuQ. PanY. Therapeutic effects of chitin from Pleurotus eryngii on high-fat diet induced obesity in rats.Acta Sci. Pol. Technol. Aliment.202019327928910.17306/J.AFS.0775 32978911
    [Google Scholar]
  99. LattimerJ.M. HaubM.D. Effects of dietary fiber and its components on metabolic health.Nutrients20102121266128910.3390/nu2121266 22254008
    [Google Scholar]
  100. ZhaoK. WuX. HanG. SunL. ZhengC. HouH. XuB.B. El-BahyZ.M. QianC. KallelM. AlgadiH. GuoZ. ShiZ. Phyllostachys nigra (Lodd. ex Lindl.) derived polysaccharide with enhanced glycolipid metabolism regulation and mice gut microbiome.Int. J. Biol. Macromol.2024257Pt 112858810.1016/j.ijbiomac.2023.128588 38048922
    [Google Scholar]
  101. ShiH. YuY. LinD. ZhengP. ZhangP. HuM. WangQ. PanW. YangX. HuT. LiQ. TangR. ZhouF. ZhengK. HuangX.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice.Microbiome20208114310.1186/s40168‑020‑00920‑y 33008466
    [Google Scholar]
  102. LiS. HeN. WangL. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice.Mar. Drugs201917954010.3390/md17090540 31533255
    [Google Scholar]
  103. ShagdarovaB. KonovalovaM. VarlamovV. SvirshchevskayaE. Anti-obesity effects of chitosan and its derivatives.Polymers (Basel)20231519396710.3390/polym15193967 37836016
    [Google Scholar]
  104. LeeM.R. KimJ.E. JinY.J. RohY.J. SeolA. SongH.J. JungM.W. HongJ.T. JangM. HwangD.Y. Anti-obesity effects of agar (Gelidium amansii)-derived oligosaccharides in high-fat diet-treated C57BL/6N mice due to differential regulations of lipogenesis and lipolysis.Biosci. Biotechnol. Biochem.202286121648165710.1093/bbb/zbac159 36166352
    [Google Scholar]
  105. LillefosseH.H. TastesenH.S. DuZ.Y. DitlevD.B. ThorsenF.A. MadsenL. KristiansenK. LiasetB. Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice.J. Nutr.201314391367137510.3945/jn.112.170415 23843475
    [Google Scholar]
  106. ShirouchiB. MatsuokaR. Alleviation of Metabolic Syndrome with Dietary Egg White Protein.J. Oleo Sci.201968651752410.5650/jos.ess19084 31168041
    [Google Scholar]
  107. BaekG.H. YooK.M. KimS.Y. LeeD.H. ChungH. JungS.C. ParkS.K. KimJ.S. Collagen peptide exerts an anti-obesity effect by influencing the firmicutes/bacteroidetes ratio in the gut.Nutrients20231511261010.3390/nu15112610 37299573
    [Google Scholar]
  108. MatsumotoY. FujitaS. YamagishiA. ShiraiT. MaedaY. SuzukiT. KobayashiK. InoueJ. YamamotoY. Brown rice inhibits development of nonalcoholic fatty liver disease in obese zucker (fa/fa) rats by increasing lipid oxidation via activation of retinoic acid synthesis.J. Nutr.202115192705271310.1093/jn/nxab188 34224565
    [Google Scholar]
  109. Cherta-MurilloA. LettA.M. FramptonJ. ChambersE.S. FinniganT.J.A. FrostG.S. Effects of mycoprotein on glycaemic control and energy intake in humans: A systematic review.Br. J. Nutr.2020123121321133210.1017/S0007114520000756 32100651
    [Google Scholar]
  110. SivaN. JohnsonC.R. RichardV. JeschE.D. WhitesideW. AboodA.A. ThavarajahP. DuckettS. ThavarajahD. Lentil (Lens culinaris Medikus) Diet affects the gut microbiome and obesity markers in rat.J. Agric. Food Chem.201866338805881310.1021/acs.jafc.8b03254 30102041
    [Google Scholar]
  111. WangT.Y. TaoS.Y. WuY.X. AnT. LvB.H. LiuJ.X. LiuY.T. JiangG.J. Quinoa reduces high-fat diet-induced obesity in mice via potential microbiota-gut-brain-liver interaction mechanisms.Microbiol. Spectr.2022103e00329e2210.1128/spectrum.00329‑22 35583337
    [Google Scholar]
  112. SeoY.J. KimK.J. ChoiJ. KohE.J. LeeB.Y. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice.Nutrients201810671210.3390/nu10060712 29865208
    [Google Scholar]
  113. GrancieriM. MartinoH.S.D. Gonzalez de MejiaE. Protein digests and pure peptides from chia seed prevented adipogenesis and inflammation by inhibiting PPARγ and NF-κB pathways in 3T3L-1 adipocytes.Nutrients202113117610.3390/nu13010176 33430086
    [Google Scholar]
  114. Sánchez-VelázquezO.A. Luna-VitalD.A. Morales-HernandezN. ContrerasJ. Villaseñor-TapiaE.C. Fragoso-MedinaJ.A. MojicaL. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin).Front. Nutr.202310116967510.3389/fnut.2023.1169675 37538927
    [Google Scholar]
  115. ZhaoM. WangB. LiL. ZhaoW. Anti-obesity effects of dietary fibers extracted from flaxseed cake in diet-induced obese mice.Nutrients2023157171810.3390/nu15071718 37049557
    [Google Scholar]
  116. SongC. SongW.T. ShuJ.T. TaoZ.Y. ZhuW.Q. DiC. LiH.F. Tissue- and breed-specific expression of the chicken fat mass- and obesity-associated gene (FTO).Genet. Mol. Res.2015143105001050610.4238/2015.September.8.11 26400281
    [Google Scholar]
  117. DaskalakiM.G. AxarlisK. TsourekiA. MichailidouS. EfraimoglouC. LapiI. KolliniatiO. DermitzakiE. VenihakiM. KousoulakiK. ArgiriouA. TsatsanisC. Fish-derived protein hydrolysates increase insulin sensitivity and alter intestinal microbiome in high-fat-induced obese mice.Mar. Drugs202321634310.3390/md21060343 37367668
    [Google Scholar]
  118. EnginA. Human protein kinases and obesity.Adv. Exp. Med. Biol.201796011113410.1007/978‑3‑319‑48382‑5_5 28585197
    [Google Scholar]
  119. DesmetS. MorreelK. DauweR. Origin and function of structural diversity in the plant specialized metabolome.Plants20211011239310.3390/plants10112393 34834756
    [Google Scholar]
  120. LiuY. LiuC. KouX. WangY. YuY. ZhenN. JiangJ. ZhaxiP. XueZ. Synergistic hypolipidemic effects and mechanisms of phytochemicals: A review.Foods20221118277410.3390/foods11182774 36140902
    [Google Scholar]
  121. LiJ. ZhaoY. CaoL. ZhengQ. GaoJ. AMPK activation of flavonoids from Psidium guajava leaves in L6 rat myoblast cells and L02 human hepatic cells.Evid. Based Complement. Alternat. Med.201920191610.1155/2019/9209043 31929823
    [Google Scholar]
  122. AhangarpourA. ShabaniR. FarboodY. The effect of betulinic acid on leptin, adiponectin, hepatic enzyme levels and lipid profiles in streptozotocin-nicotinamide-induced diabetic mice.Res. Pharm. Sci.201813214214810.4103/1735‑5362.223796 29606968
    [Google Scholar]
  123. BaysH.E. FitchA. ChristensenS. BurridgeK. TondtJ. Anti-Obesity Medications and Investigational Agents: An obesity medicine association (OMA) clinical practice statement (CPS) 2022.Obesity Pillars2022210001810.1016/j.obpill.2022.100018 37990711
    [Google Scholar]
  124. GardinJ.M. SchumacherD. ConstantineG. DavisK.D. LeungC. ReidC.L. Valvular abnormalities and cardiovascular status following exposure to dexfenfluramine or phentermine/fenfluramine.JAMA2000283131703170910.1001/jama.283.13.1703 10755496
    [Google Scholar]
  125. HvizdosK.M. MarkhamA. Orlistat.Drugs199958474376010.2165/00003495‑199958040‑00015 10551441
    [Google Scholar]
  126. GarveyW.T. FriasJ.P. JastreboffA.M. le RouxC.W. SattarN. AizenbergD. MaoH. ZhangS. AhmadN.N. BunckM.C. BenabbadI. ZhangX.M. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial.Lancet20234021040261362610.1016/S0140‑6736(23)01200‑X 37385275
    [Google Scholar]
  127. SmithS.M. MeyerM. TrinkleyK.E. Phentermine/topiramate for the treatment of obesity.Ann. Pharmacother.201347334034910.1345/aph.1R501 23482732
    [Google Scholar]
  128. LinQ. XueY. ZouH. RuanZ. UngC.O.L. HuH. Efficacy and safety of liraglutide for obesity and people who are overweight: A systematic review and meta-analysis of randomized controlled trials.Expert Rev. Clin. Pharmacol.202215121461146910.1080/17512433.2022.2130760 36180402
    [Google Scholar]
  129. BarreaL. PuglieseG. MuscogiuriG. LaudisioD. ColaoA. SavastanoS. New-generation anti-obesity drugs: Naltrexone/bupropion and liraglutide. An update for endocrinologists and nutritionists.Minerva Endocrinol.202045212713710.23736/S0391‑1977.20.03179‑X 32643356
    [Google Scholar]
  130. KimA. NguyenJ. BabaeiM. KimA. GellerD.H. VidmarA.P. A narrative review: Phentermine and topiramate for the treatment of pediatric obesity.Adolesc. Health Med. Ther.20231412514010.2147/AHMT.S383454 37641650
    [Google Scholar]
  131. OnakpoyaI.J. LeeJ.J. MahtaniK.R. AronsonJ.K. HeneghanC.J. Naltrexone-bupropion (Mysimba) in management of obesity: A systematic review and meta-analysis of unpublished clinical study reports.Br. J. Clin. Pharmacol.202086464666710.1111/bcp.14210
    [Google Scholar]
  132. OnakpoyaI.J. AronsonJ.K. Lorcaserin in obesity: Minimal benefits and ill-defined harms.BMJ Evid. Based Med.201924414514610.1136/bmjebm‑2018‑111128 30700436
    [Google Scholar]
  133. Cabrerizo GarcíaL. Ramos-LevíA. Moreno LoperaC. Rubio HerreraM.A. Update on pharmacology of obesity: Benefits and risks.Nutr. Hosp.2013285Suppl. 512112710.3305/nh.2013.28.sup5.6927 24010752
    [Google Scholar]
  134. SharmaB. HendersonD.C. Sibutramine: Current status as an anti-obesity drug and its future perspectives.Expert Opin. Pharmacother.20089122161217310.1517/14656566.9.12.2161 18671470
    [Google Scholar]
  135. AotaniD. SonC. ShimizuY. NomuraH. HikidaT. KusakabeT. TanakaT. MiyazawaT. HosodaK. NakaoK. Reevaluation of anti-obesity action of mazindol and elucidation of its effect on the reward system.Neurosci. Lett.201663314114510.1016/j.neulet.2016.09.014 27658895
    [Google Scholar]
  136. WangY. HeW. WeiW. MeiX. YangM. WangY. Exenatide attenuates obesity-induced mitochondrial dysfunction by activating SIRT1 in renal tubular cells.Front. Endocrinol. (Lausanne)20211262273710.3389/fendo.2021.622737 34434166
    [Google Scholar]
  137. DąbrowskaA.M. DudkaJ. Mirabegron, a selective β3-adrenergic receptor agonist, as a potential anti-obesity drug.J. Clin. Med.20231221689710.3390/jcm12216897 37959362
    [Google Scholar]
  138. BelloN.T. ZahnerM.R. Tesofensine, a monoamine reuptake inhibitor for the treatment of obesity.Curr. Opin. Investig. Drugs2009101011051116 19777399
    [Google Scholar]
  139. PressleyH. CornelioC.K. AdamsE.N. Setmelanotide: A novel targeted treatment for monogenic obesity.J. Pharm. Technol.202238636837310.1177/87551225221116010 36311304
    [Google Scholar]
  140. ChaoA.M. TronieriJ.S. AmaroA. WaddenT.A. Semaglutide for the treatment of obesity.Trends Cardiovasc. Med.202333315916610.1016/j.tcm.2021.12.008 34942372
    [Google Scholar]
  141. WeiD. LiaoL. WangH. ZhangW. WangT. XuZ. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro.Life Sci.202024711741410.1016/j.lfs.2020.117414 32035928
    [Google Scholar]
  142. RadlingerB. RessC. FolieS. SalzmannK. LechugaA. WeissB. SalvenmoserW. GraberM. HirschJ. HolfeldJ. KremserC. MoserP. StaudacherG. JelenikT. RodenM. TilgH. KaserS. Empagliflozin protects mice against diet-induced obesity, insulin resistance and hepatic steatosis.Diabetologia202366475476710.1007/s00125‑022‑05851‑x 36525084
    [Google Scholar]
  143. LinK. YangN. LuoW. QianJ. ZhuW. YeS. YuanC. XuD. LiangG. HuangW. ShanP. Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling.Acta Pharmacol. Sin.202243102624263510.1038/s41401‑022‑00885‑8 35217813
    [Google Scholar]
  144. YamauchiY. NakamuraA. YokotaT. TakahashiK. KawataS. TsuchidaK. OmoriK. NomotoH. KamedaH. ChoK.Y. AnzaiT. TanakaS. TerauchiY. MiyoshiH. AtsumiT. Luseogliflozin preserves the pancreatic beta-cell mass and function in db/db mice by improving mitochondrial function.Sci. Rep.2022121974010.1038/s41598‑022‑13888‑6 35697838
    [Google Scholar]
  145. TakeshitaY. HondaM. HaradaK. KitaY. TakataN. TsujiguchiH. TanakaT. GotoH. NakanoY. IidaN. AraiK. YamashitaT. MizukoshiE. NakamuraH. KanekoS. TakamuraT. Comparison of tofogliflozin and glimepiride effects on nonalcoholic fatty liver disease in participants with type 2 diabetes: a randomized, 48-week, open-label, active-controlled trial.Diabetes Care20224592064207510.2337/dc21‑2049 35894933
    [Google Scholar]
  146. SugaT. SatoK. OhyamaT. MatsuiS. KobayashiT. TojimaH. HoriguchiN. YamazakiY. KakizakiS. NishikidoA. OkamuraT. YamadaM. KitamuraT. UraokaT. Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling.World J. Hepatol.202012735036210.4254/wjh.v12.i7.350 32821334
    [Google Scholar]
  147. NakanoS. KatsunoK. IsajiM. NagasawaT. BuehrerB. WalkerS. WilkisonW.O. CheathamB. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice.J. Clin. Exp. Hepatol.20155319019810.1016/j.jceh.2015.02.005 26628836
    [Google Scholar]
  148. SamsonS.L. GarberA.J. A Plethora of GLP-1 agonists: Decisions about what to use and when.Curr. Diab. Rep.2016161212010.1007/s11892‑016‑0823‑6 27766579
    [Google Scholar]
  149. KosmalskiM. DeskaK. BąkB. Różycka-KosmalskaM. PietrasT. Pharmacological support for the treatment of obesity-present and future.Healthcare (Basel)202311343310.3390/healthcare11030433 36767008
    [Google Scholar]
  150. CamilleriM. AcostaA. Combination therapies for obesity.Metab. Syndr. Relat. Disord.201816839039410.1089/met.2018.0075 29993319
    [Google Scholar]
  151. KimM.K. ChaeY.N. AhnG.J. ShinC.Y. ChoiS. YangE.K. SohnY.S. SonM.H. Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models.Arch. Pharm. Res.201740226828110.1007/s12272‑016‑0864‑z 27885461
    [Google Scholar]
  152. ChaeY.N. KimT.H. KimM.K. ShinC.Y. JungI.H. SohnY.S. SonM.H. Beneficial effects of evogliptin, a novel dipeptidyl peptidase 4 inhibitor, on adiposity with increased ppargc1a in white adipose tissue in obese mice.PLoS One20151012e014406410.1371/journal.pone.0144064 26633898
    [Google Scholar]
  153. AddyC. TatosianD. GlasgowX.S. GendranoI.N.III KauhE. MartucciA. Johnson-LevonasA.O. SelverianD. MatthewsC.Z. GutierrezM. WagnerJ.A. Aubrey StochS. Pharmacokinetic and pharmacodynamic effects of multiple-dose administration of omarigliptin, a once-weekly dipeptidyl peptidase-4 inhibitor, in obese participants with and without type 2 diabetes mellitus.Clin. Ther.201638351653010.1016/j.clinthera.2015.12.020 26869191
    [Google Scholar]
  154. SamatA. TomlinsonB. TaheriS. ThomasG. Rimonabant for the treatment of obesity.Recent Adv. Cardiovasc. Drug Discov.20083318719310.2174/157489008786264014 18991793
    [Google Scholar]
  155. LiC. DavisX. LahniP. StuckJ. WilliamsonL. KaplanJ. Obesity protects against sepsis-induced and norepinephrine-induced white adipose tissue browning.Am. J. Physiol. Endocrinol. Metab.20213213E433E44210.1152/ajpendo.00380.2020 34370596
    [Google Scholar]
  156. PinderR.M. BrogdenR.N. SawyerP.R. SpeightT.M. AveryG.S. Fenfluramine.Drugs197510424132310.2165/00003495‑197510040‑00001 765100
    [Google Scholar]
  157. BrindleyD.N. RussellJ.C. Metabolic abnormalities linked to obesity: Effects of dexfenfluramine in the corpulent rat.Metabolism1995442Suppl. 2232710.1016/0026‑0495(95)90205‑8 7869933
    [Google Scholar]
  158. ChanJ.L. KodaJ. HeiligJ.S. CochranE.K. GordenP. OralE.A. BrownR.J. Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy.Clin. Endocrinol. (Oxf.)201685113714910.1111/cen.12980 26589105
    [Google Scholar]
  159. AzebuL.M. The FDA’s risk/benefit calculus in the approvals of Qsymia and Belviq: Treating an obesity epidemic while avoiding another fen-phen.Food Drug Law J.201469187111 24772687
    [Google Scholar]
  160. HolmbäckU. GrudénS. LitorpH. WillhemsD. KuuskS. AlderbornG. SöderhällA. ForslundA. Effects of a novel weight‐loss combination product containing orlistat and acarbose on obesity: A randomized, placebo‐controlled trial.Obesity (Silver Spring)202230112222223210.1002/oby.23557 36123783
    [Google Scholar]
  161. SmithS.R. AronneL.J. BurnsC.M. KestyN.C. HalsethA.E. WeyerC. Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity.Diabetes Care20083191816182310.2337/dc08‑0029 18753666
    [Google Scholar]
  162. GaddeK.M. ParkerC.B. ManerL.G. WagnerH.R.II LogueE.J. DreznerM.K. KrishnanK.R.R. Bupropion for weight loss: An investigation of efficacy and tolerability in overweight and obese women.Obes. Res.20019954455110.1038/oby.2001.71 11557835
    [Google Scholar]
  163. Kulak-BejdaA. BejdaG. WaszkiewiczN. Safety and efficacy of naltrexone for weight loss in adult patients – a systematic review.Arch. Med. Sci.202117494095310.5114/aoms.2020.96908 34336024
    [Google Scholar]
  164. LeeJ. KimR. KimM.H. LeeS.H. ChoJ.H. LeeJ.M. JangS.A. KimH.S. Weight loss and side-effects of liraglutide and lixisenatide in obesity and type 2 diabetes mellitus.Prim. Care Diabetes202317546046510.1016/j.pcd.2023.07.006 37541792
    [Google Scholar]
  165. FalaL. Tanzeum (Albiglutide): A once-weekly GLP-1 receptor agonist subcutaneous injection approved for the treatment of patients with type 2 diabetes.Am. Health Drug Benefits20158Spec Feature126130 26629277
    [Google Scholar]
  166. LiY. GongX. GămanM.A. Hernández-WoltersB. VeluP. LiY. The effect of subcutaneous dulaglutide on weight loss in patients with Type 2 diabetes mellitus: Systematic review and meta-analysis of randomized controlled trials.Eur. J. Clin. Invest.20232023e1412510.1111/eci.14125 37950521
    [Google Scholar]
  167. KawadeS. OgisoK. ShayoS.C. OboT. ArimuraA. HashiguchiH. DeguchiT. NishioY. Luseogliflozin and caloric intake restriction increase superoxide dismutase 2 expression, promote antioxidative effects, and attenuate aortic endothelial dysfunction in diet‐induced obese mice.J. Diabetes Investig.202314454855910.1111/jdi.13981 36729938
    [Google Scholar]
  168. MatsubaR. MatsubaI. ShimokawaM. NagaiY. TanakaY. Tofogliflozin decreases body fat mass and improves peripheral insulin resistance.Diabetes Obes. Metab.20182051311131510.1111/dom.13211 29316197
    [Google Scholar]
  169. TaharaA. KurosakiE. YokonoM. YamajukuD. KiharaR. HayashizakiY. TakasuT. ImamuraM. LiQ. TomiyamaH. KobayashiY. NodaA. SasamataM. ShibasakiM. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice.Eur. J. Pharmacol.20137151-324625510.1016/j.ejphar.2013.05.014 23707905
    [Google Scholar]
  170. NapolitanoA. MillerS. MurgatroydP.R. HusseyE. DobbinsR.L. BullmoreE.T. NunezD.J.R. Exploring glycosuria as a mechanism for weight and fat mass reduction. A pilot study with remogliflozin etabonate and sergliflozin etabonate in healthy obese subjects.J. Clin. Transl. Endocrinol.201411e3e810.1016/j.jcte.2013.12.001 29235586
    [Google Scholar]
  171. WangG. WuB. ZhangL. JinX. WangK. XuW. ZhangB. WangH. The protective effects of trelagliptin on high‐fat diet‐induced nonalcoholic fatty liver disease in mice.J. Biochem. Mol. Toxicol.2021354e2269610.1002/jbt.22696 33421258
    [Google Scholar]
  172. KimJ.H. JangS.J. RohG.S. ChoH.S. KangH. KimS.K. Protective effects of evogliptin on steatohepatitis in high-fat-fed mice.Int. J. Mol. Sci.20202118674310.3390/ijms21186743 32937958
    [Google Scholar]
  173. AddyC. TatosianD.A. GlasgowX.S. IiiI.N.G. SiskC.M. KauhE.A. StochS.A. WagnerJ.A. Effects of age, sex, and obesity on the single‐dose pharmacokinetics of omarigliptin in healthy subjects.Clin. Pharmacol. Drug Dev.20165537438210.1002/cpdd.255 27627193
    [Google Scholar]
  174. CoulterA.A. RebelloC.J. GreenwayF.L. Centrally acting agents for obesity: Past, Present, and Future.Drugs201878111113113210.1007/s40265‑018‑0946‑y 30014268
    [Google Scholar]
  175. WestK.S. LawsonV. SwansonA.M. DuniganA.I. RoseberryA.G. Amphetamine dose‐dependently decreases and increases binge intake of fat and sucrose independent of sex.Obesity (Silver Spring)201927111874188210.1002/oby.22636 31562706
    [Google Scholar]
  176. WajidI. VegaA. ThornhillK. JenkinsJ. MerrimanC. ChandlerD. ShekoohiS. CornettE.M. KayeA.D. Topiramate (topamax): Evolving role in weight reduction management: A Narrative Review.Life (Basel)2023139184510.3390/life13091845 37763249
    [Google Scholar]
  177. SunN.N. WuT.Y. ChauC.F. Natural dietary and herbal products in anti-obesity treatment.Molecules20162110135110.3390/molecules21101351
    [Google Scholar]
  178. KarimiA. MajlesiM. Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts.J. Nephropharmacol.2015412730 28197471
    [Google Scholar]
  179. LiuY. SunM. YaoH. LiuY. GaoR. Herbal medicine for the treatment of obesity: An overview of scientific evidence from 2007 to 2017.Evid. Based Complement. Alternat. Med.2017201711710.1155/2017/8943059 29234439
    [Google Scholar]
  180. ShuP. ZhangZ. WuY. ChenY. LiK. DengH. ZhangJ. ZhangX. WangJ. LiuZ. XieY. DuK. LiM. BouzayenM. HongY. ZhangY. LiuM. A comprehensive metabolic map reveals major quality regulations in red‐flesh kiwifruit (Actinidia chinensis).New Phytol.202323852064207910.1111/nph.18840 36843264
    [Google Scholar]
  181. RamanunnyA.K. WadhwaS. GulatiM. VishwasS. KhursheedR. PaudelK.R. GuptaS. PorwalO. AlshahraniS.M. JhaN.K. ChellappanD.K. PrasherP. GuptaG. AdamsJ. DuaK. TewariD. SinghS.K. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine.J. Ethnopharmacol.202229111514410.1016/j.jep.2022.115144 35227783
    [Google Scholar]
  182. PillaiM.K. YoungD.J. Bin Hj Abdul MajidH.M. Therapeutic potential of Alpinia officinarum.Mini Rev. Med. Chem.201818141220123210.2174/1389557517666171002154123 28969549
    [Google Scholar]
  183. PereiraA.G. CassaniL. LiuC. LiN. ChamorroF. BarreiraJ.C.M. Simal-GandaraJ. PrietoM.A. Camellia japonica flowers as a source of nutritional and bioactive compounds.Foods20231215282510.3390/foods12152825 37569093
    [Google Scholar]
  184. ChilakalaR. MoonH.J. KimK. YangS. CheongS.H. Antiobesity effects of camellia (Camellia oleifera Abel) oil treatment on high-fat diet-induced obesity in C57BL/6J mice.Phys. Act. Nutr.202327205006110.20463/pan.2023.0018 37583072
    [Google Scholar]
  185. CucN.T. YenD.T.H. YenP.H. HangD.T.T. TaiB.H. SeoY. NamkungW. KimS.H. CuongP.V. KiemP.V. NhiemN.X. NgocT.M. Dihydrostilbene glycosides from Camellia sinensis var. assamica and their cytotoxic activity.Nat. Prod. Res.202236153931393710.1080/14786419.2021.1900844 33749416
    [Google Scholar]
  186. HossinA.Y. InafukuM. TakaraK. NugaraR.N. OkuH. Syringin: A phenylpropanoid glycoside compound in Cirsium brevicaule A. Gray root modulates adipogenesis.Molecules2021266153110.3390/molecules26061531 33799634
    [Google Scholar]
  187. WangF. ChenL. ChenH. ChenS. LiuY. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata “Dahongpao”) using UPLC-ESI-MS/MS.Molecules20192415268010.3390/molecules24152680 31344795
    [Google Scholar]
  188. KangS.I. ShinH.S. KimH.M. HongY.S. YoonS.A. KangS.W. KimJ.H. KimM.H. KoH.C. KimS.J. Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice.Biol. Pharm. Bull.201235222323010.1248/bpb.35.223 22293353
    [Google Scholar]
  189. Mohan Maruga RajaM.K. MishraS.H. Comprehensive review of Clerodendrum phlomidis: A traditionally used bitter.J. Chin. Integr. Med.20108651052410.3736/jcim20100602 20550872
    [Google Scholar]
  190. HanM.J. ChoungS.Y. Codonopsis lanceolata ameliorates sarcopenic obesity via recovering PI3K/Akt pathway and lipid metabolism in skeletal muscle.Phytomedicine20229615387710.1016/j.phymed.2021.153877 35026519
    [Google Scholar]
  191. GopalakrishnaS. MariyannaB. ThekkootM. ReddyR. TippeswamyB.S. ShivaprasadH.N. Effect of Coleus forskohlii extract on cafeteria diet-induced obesity in rats.Pharmacognosy Res.201461424510.4103/0974‑8490.122916 24497741
    [Google Scholar]
  192. HuangJ. ZhangY. DongL. GaoQ. YinL. QuanH. ChenR. FuX. LinD. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc.J. Ethnopharmacol.201821328030110.1016/j.jep.2017.11.010 29155174
    [Google Scholar]
  193. ShafiA. FarooqU. AkramK. MajeedH. HakimA. JayasingheM. Cucumis melo seed oil: Agro‐food by‐product with natural anti‐hyperlipidemic potential.J. Sci. Food Agric.202310341644165010.1002/jsfa.12348 36418190
    [Google Scholar]
  194. SongM.Y. LvN. KimE.K. KwonK.S. YooY.B. KimJ.H. LeeS.W. SongJ.H. LeeJ.H. LeeS.K. ShinB.C. RyuD.G. ParkB.H. KwonK.B. Antiobesity activity of aqueous extracts of Rhizoma Dioscoreae Tokoronis on high-fat diet-induced obesity in mice.J. Med. Food200912230430910.1089/jmf.2008.1010 19459730
    [Google Scholar]
  195. ScottI.M. McDowellT. RenaudJ.B. KrolikowskiS.W. ChenL. DhaubhadelS. Soybean (Glycine max L Merr) host-plant defenses and resistance to the two-spotted spider mite (Tetranychus urticae Koch).PLoS One20211610e025819810.1371/journal.pone.0258198 34618855
    [Google Scholar]
  196. SimY.Y. NyamK.L. Hibiscus cannabinus L. (kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications.Food Chem.202134412858210.1016/j.foodchem.2020.128582 33199120
    [Google Scholar]
  197. ParkJ.H. AhnE.K. KimJ.K. OhJ.S. Antihyperlipidemic Activity of Ligularia fischeri Extract in Mice Fed a High-Carbohydrate Diet.J. Med. Food201922437438310.1089/jmf.2018.4248 30801226
    [Google Scholar]
  198. KimN.Y. ThomasS.S. HwangD.I. LeeJ.H. KimK.A. ChaY.S. Anti-obesity effects of Morus alba L. and Aronia melanocarpa in a high-fat diet-induced obese C57BL/6J mouse model.Foods2021108191410.3390/foods10081914 34441691
    [Google Scholar]
  199. MancusoC. SantangeloR. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology.Food Chem. Toxicol.201710736237210.1016/j.fct.2017.07.019
    [Google Scholar]
  200. SongJ. liu, Q.; Hao, M.; Zhai, X.; Chen, J. Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites.Front. Endocrinol. (Lausanne)202314107859310.3389/fendo.2023.1078593 36777345
    [Google Scholar]
  201. OhJ. LeeH. LimH. WooS. ShinS.S. YoonM. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica inhibits visceral obesity and insulin resistance by upregulating visceral adipose genes involved in fatty acid oxidation.Pharm. Biol.201553230131210.3109/13880209.2014.917328 25243869
    [Google Scholar]
  202. HassaniF.V. ShiraniK. HosseinzadehH. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review.Naunyn Schmiedebergs Arch. Pharmacol.2016389993194910.1007/s00210‑016‑1256‑0
    [Google Scholar]
  203. KowalskaK. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a source of bioactive compounds with health-promoting effects—a review.Int. J. Mol. Sci.20212210512610.3390/ijms22105126 34066191
    [Google Scholar]
  204. Pratap SinghR. PattnaikA. K. Anti-obesity potential of bioactive guided fractions of Annona squamosa linn. leaves extract: A combination of in-vitro, in-vivo and in-silico studies along with profiling of lead compounds by HPTLC MS-MSn method.3 Biotech202313617110.1007/s13205‑023‑03603‑1
    [Google Scholar]
  205. MohantyS. PattnaikA. Scientific evaluation of anti-obesity potential of methanolic leaves extract of Ocimum sanctum (Linn.) in monosodium glutamate-high fat diet induced obese mice.Indian J Pharmaceut Edu Res2021552ss535s54310.5530/ijper.55.2s.125
    [Google Scholar]
  206. LeeH.B. OhM.J. DoM.H. KimY.S. ParkH.Y. Molokhia leaf extract prevents gut inflammation and obesity.J. Ethnopharmacol.202025711286610.1016/j.jep.2020.112866 32302714
    [Google Scholar]
  207. ObandaD.N. RibnickyD. YuY. StephensJ. CefaluW.T. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).Sci. Rep.2016612222210.1038/srep22222 26916435
    [Google Scholar]
  208. MandarB.K. KhanalP. PatilB.M. DeyY.N. PashaI. In silico analysis of phytoconstituents from Tinospora cordifolia with targets related to diabetes and obesity.In Silico Pharmacol.202191310.1007/s40203‑020‑00063‑w 33442530
    [Google Scholar]
  209. ParimB. HarishankarN. BalajiM. PothanaS. SajjalaguddamR.R. Effects of Piper nigrum extracts: Restorative perspectives of high-fat diet-induced changes on lipid profile, body composition, and hormones in Sprague–Dawley rats.Pharm. Biol.20155391318132810.3109/13880209.2014.980585 25856709
    [Google Scholar]
  210. FomenkoE.V. ChiY. Mangiferin modulation of metabolism and metabolic syndrome.Biofactors201642549250310.1002/biof.1309 27534809
    [Google Scholar]
  211. MartineauL. HervéJ. MuhamadA. SaleemA. HarrisC. ArnasonJ. HaddadP. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: Sites and mechanisms of action.Planta Med.201076131439144610.1055/s‑0029‑1240941 20301057
    [Google Scholar]
  212. XuM. XueH. KongL. LinL. ZhengG. milax china L. Polyphenols improves insulin resistance and obesity in high-fat diet-induced mice through IRS/AKT-AMPK and NF-κB signaling pathways.Plant Foods Hum. Nutr.202378229930610.1007/s11130‑023‑01052‑y 36826691
    [Google Scholar]
  213. Carmona-HernandezJ.C. Taborda-OcampoG. ValdezJ.C. BollingB.W. González-CorreaC.H. Polyphenol extracts from three Colombian Passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of caco-2 cells.Molecules20192424461410.3390/molecules24244614 31861064
    [Google Scholar]
  214. ElabdE.M.Y. MorsyS.M. ElmaltH.A. Investigating of Moringa Oleifera role on gut microbiota composition and inflammation associated with obesity following high fat diet feeding.Open Access Maced. J. Med. Sci.2018681359136410.3889/oamjms.2018.313 30159057
    [Google Scholar]
  215. ZhangX. HuP. ZhangX. LiX. Chemical structure elucidation of an inulin-type fructan isolated from Lobelia chinensis lour with anti-obesity activity on diet-induced mice.Carbohydr. Polym.202024011635710.1016/j.carbpol.2020.116357 32475601
    [Google Scholar]
  216. AnigboroA.A. AvwiorokoO.J. AkeghwareO. TonukariN.J. Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: Insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis.Biophys. Chem.202127410660710.1016/j.bpc.2021.106607 33957576
    [Google Scholar]
  217. YangR. LiuF. HeZ. JiM. ChuX. KangZ. CaiD. GaoN. Anti-obesity effect of total phenylpropanoid glycosides from Ligustrum robustum Blume in fatty diet-fed mice via up-regulating leptin.J. Ethnopharmacol.201516945946510.1016/j.jep.2014.12.066 25576894
    [Google Scholar]
  218. KarmaseA. BirariR. BhutaniK.K. Evaluation of anti-obesity effect of Aegle marmelos leaves.Phytomedicine2013201080581210.1016/j.phymed.2013.03.014 23632084
    [Google Scholar]
  219. ParkS. KangS. KimD.S. MoonB.R. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β -amyloid-infused rats.Nutr. Neurosci.2017202778810.1080/1028415X.2015.1135572 26842885
    [Google Scholar]
  220. LeeM. SongJ.Y. ChinY.W. SungS.H. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells.Bioorg. Med. Chem. Lett.20132372069207310.1016/j.bmcl.2013.01.127 23465614
    [Google Scholar]
  221. AisoI. InoueH. SeiyamaY. KuwanoT. Compared with the intake of commercial vegetable juice, the intake of fresh fruit and komatsuna (Brassica rapa L. var. perviridis) juice mixture reduces serum cholesterol in middle-aged men: A randomized controlled pilot study.Lipids Health Dis.201413110210.1186/1476‑511X‑13‑102 24961537
    [Google Scholar]
  222. MekalaK. Pharmacognostical, Phytochemical, Formulation and Evaluation of Hypolipidemic and Anti-Obesity Activity on Heartwood of Caesalpinia Sappan Linn., Doctoral dissertation, College of Pharmacy, Madras Medical College, Chennai.,2016
    [Google Scholar]
  223. ShenC.Y. WanL. WangT.X. JiangJ.G. Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1 cells and Caenorhabditis elegans and prevented obesity in high-fat diet-fed mice.Pharmacol. Res.201914710434710.1016/j.phrs.2019.104347 31315066
    [Google Scholar]
  224. SongW.Y. ChoiJ.H. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats.Nutr. Res. Pract.201610548749310.4162/nrp.2016.10.5.487 27698955
    [Google Scholar]
  225. KumarV. SinghD.D. LakhawatS.S. YasmeenN. PandeyA. SinglaR.K. Biogenic phytochemicals modulating obesity: From molecular mechanism to preventive and therapeutic approaches.Evid. Based Complement. Alternat. Med.2022202212010.1155/2022/6852276 35388304
    [Google Scholar]
  226. PheifferC. DudhiaZ. LouwJ. MullerC. JoubertE. Cyclopia maculata (honeybush tea) stimulates lipolysis in 3T3-L1 adipocytes.Phytomedicine201320131168117110.1016/j.phymed.2013.06.016 23880330
    [Google Scholar]
  227. SongH.S. KooH.J. ParkB.K. KwonJ.E. JangS.A. BaekH.J. KimS.Y. LeeS.R. KangS.C. The suppressive effect of the three-herb extract mixture on vascular and liver inflammation in atherogenic diet with high fructose-fed mice.Pharm. Biol.2018561324210.1080/13880209.2017.1412468 29772938
    [Google Scholar]
  228. WoumboC.Y. KuateD. WomeniH.M. Cooking methods affect phytochemical composition and anti-obesity potential of soybean (Glycine max) seeds in Wistar rats.Heliyon201738e0038210.1016/j.heliyon.2017.e00382 28920089
    [Google Scholar]
  229. HeckC.I. De MejiaE.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations.J. Food Sci.2007729R138R15110.1111/j.1750‑3841.2007.00535.x 18034743
    [Google Scholar]
  230. WuT. TangQ. GaoZ. YuZ. SongH. ZhengX. ChenW. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice.PLoS One2013810e7758510.1371/journal.pone.0077585 24143244
    [Google Scholar]
  231. HeY. TaoY. QiuL. XuW. HuangX. WeiH. TaoX. Lotus (Nelumbo nucifera Gaertn.) leaf-fermentation supernatant inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat diet-induced obese rats.Nutrients20221420434810.3390/nu14204348 36297031
    [Google Scholar]
  232. NukitrangsanN. OkabeT. TodaT. InafukuM. IwasakiH. OkuH. Effect of Peucedanum japonicum Thunb extract on high-fat diet-induced obesity and gene expression in mice.J. Oleo Sci.20126128910110.5650/jos.61.89 22277893
    [Google Scholar]
  233. VorugantiV.S. Precision nutrition: Recent advances in obesity.Physiology (Bethesda)2023381202210.1152/physiol.00014.2022
    [Google Scholar]
  234. BatsisJ.A. ApolzanJ.W. BagleyP.J. BluntH.B. DivanV. GillS. GoldenA. GundumrajS. HeymsfieldS.B. KahanS. KopatsisK. PortA. ParksE.P. ReillyC.A. RubinoD. SaundersK.H. SheanR. TabazaL. StanleyA. TchangB.G. GundumrajS. KidambiS. A systematic review of dietary supplements and alternative therapies for weight loss.Obesity (Silver Spring)20212971102111310.1002/oby.23110 34159755
    [Google Scholar]
  235. JunS. CowanA.E. BhadraA. DoddK.W. DwyerJ.T. Eicher-MillerH.A. GahcheJ.J. GuentherP.M. PotischmanN. ToozeJ.A. BaileyR.L. Older adults with obesity have higher risks of some micronutrient inadequacies and lower overall dietary quality compared to peers with a healthy weight, National Health and Nutrition Examination Surveys (NHANES), 2011–2014.Public Health Nutr.202023132268227910.1017/S1368980020000257 32466808
    [Google Scholar]
  236. DjaoudeneO. RomanoA. BradaiY.D. ZebiriF. OucheneA. YousfiY. Amrane-AbiderM. Sahraoui-ReminiY. MadaniK. A global overview of dietary supplements: regulation, market trends, usage during the COVID-19 pandemic, and health effects.Nutrients20231515332010.3390/nu15153320 37571258
    [Google Scholar]
  237. ChenY. HamiduS. YangX. YanY. WangQ. LiL. OduroP.K. LiY. Dietary supplements and natural products: An update on their clinical effectiveness and molecular mechanisms of action during accelerated biological aging.Front. Genet.20221388042110.3389/fgene.2022.880421 35571015
    [Google Scholar]
  238. ArslanS. KadayifçilarS. SamurG. The potential role of dietary antioxidant capacity in preventing age-related macular degeneration.J. Am. Coll. Nutr.201938542443210.1080/07315724.2018.1538830 30570376
    [Google Scholar]
  239. CiecierskaA. DrywieńM.E. HamulkaJ. SadkowskiT. Nutraceutical functions of beta-glucans in human nutrition.Rocz. Panstw. Zakl. Hig.201970431532410.32394/rpzh.2019.0082 31960663
    [Google Scholar]
  240. AlamM.A. SubhanN. RahmanM.M. UddinS.J. RezaH.M. SarkerS.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action.Adv. Nutr.20145440441710.3945/an.113.005603 25022990
    [Google Scholar]
  241. SutterD.O. BenderN. Nutrient status and growth in vegan children.Nutr. Res.202191132510.1016/j.nutres.2021.04.005 34130207
    [Google Scholar]
  242. Ni MhurchuC. Dunshea-MooijC.A. BennettD. RodgersA. Chitosan for overweight or obesity.Cochrane Database Syst. Rev.20053CD00389210.1002/14651858.CD003892.pub2 16034912
    [Google Scholar]
  243. TianH. GuoX. WangX. HeZ. SunR. GeS. ZhangZ. Chromium picolinate supplementation for overweight or obese adults.Cochrane Libr.2013201311CD01006310.1002/14651858.CD010063.pub2 24293292
    [Google Scholar]
  244. GuY. YuS. LambertJ.D. Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice.Eur. J. Nutr.201453114915810.1007/s00394‑013‑0510‑1 23494741
    [Google Scholar]
  245. LiR. LanY. ChenC. CaoY. HuangQ. HoC.T. LuM. Anti-obesity effects of capsaicin and the underlying mechanisms: A review.Food Funct.20201197356737010.1039/D0FO01467B 32820787
    [Google Scholar]
  246. ChaY.S. Effects of L-carnitine on obesity, diabetes, and as an ergogenic aid.Asia Pac. J. Clin. Nutr.200817Suppl. 1306308 18296364
    [Google Scholar]
  247. MitraM. GantaitS. MandalN. Coleus forskohlii: Advancements and prospects of in vitro biotechnology.Appl. Microbiol. Biotechnol.202010462359237110.1007/s00253‑020‑10377‑6 31989223
    [Google Scholar]
  248. den HartighL.J. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives.Nutrients201911237010.3390/nu11020370
    [Google Scholar]
  249. ZhangD. DengA.J. MaL. LiZ.H. ZhangZ.H. JiangJ.D. QinH.L. Phenylpropanoids from the stems of Ephedra sinica.J. Asian Nat. Prod. Res.201618326026710.1080/10286020.2015.1070831 26531854
    [Google Scholar]
  250. MaedaH. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: A review.J. Oleo Sci.201564212513210.5650/jos.ess14226 25748372
    [Google Scholar]
  251. GolzarandM. OmidianM. ToolabiK. Effect of Garcinia cambogia supplement on obesity indices: A systematic review and dose-response meta-analysis.Complement. Ther. Med.20205210245110.1016/j.ctim.2020.102451 32951714
    [Google Scholar]
  252. KeithleyJ. SwansonB. Glucomannan and obesity: A critical review.Altern. Ther. Health Med.20051163034 16320857
    [Google Scholar]
  253. GorjiZ. VarkanehH.K. talaei, S.; Nazary-Vannani, A.; Clark, C.C.T.; Fatahi, S.; Rahmani, J.; Salamat, S.; Zhang, Y. The effect of green-coffee extract supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials.Phytomedicine20196315301810.1016/j.phymed.2019.153018 31398662
    [Google Scholar]
  254. WolframS. WangY. ThieleckeF. Anti‐obesity effects of green tea: From bedside to bench.Mol. Nutr. Food Res.200650217618710.1002/mnfr.200500102 16470636
    [Google Scholar]
  255. OkamuraT. HamaguchiM. MoriJ. YamaguchiM. MizushimaK. AbeA. OzekiM. SasanoR. NaitoY. FukuiM. Partially hydrolyzed guar gum suppresses the development of sarcopenic obesity.Nutrients2022146115710.3390/nu14061157 35334814
    [Google Scholar]
  256. VermaakI. HammanJ. ViljoenA. Hoodia gordonii: An up-to-date review of a commercially important anti-obesity plant.Planta Med.201177111149116010.1055/s‑0030‑1250643 21259185
    [Google Scholar]
  257. OnakpoyaI. DaviesL. PosadzkiP. ErnstE. The efficacy of Irvingia gabonensis supplementation in the management of overweight and obesity: A systematic review of randomized controlled trials.J. Diet. Suppl.2013101293810.3109/19390211.2012.760508 23419021
    [Google Scholar]
  258. Piña-ContrerasN. Martínez-MorenoA.G. Ramírez-AnayaJ.D.P. Espinoza-GallardoA.C. ValdésE.H.M. Raspberry (Rubus idaeus L.), a promising alternative in the treatment of hyperglycemia and dyslipidemias.J. Med. Food202225212112910.1089/jmf.2021.0046 34941428
    [Google Scholar]
  259. WyattH.R. Update on treatment strategies for obesity.J. Clin. Endocrinol. Metab.20139841299130610.1210/jc.2012‑3115 23443815
    [Google Scholar]
  260. KalmanD. ColkerC.M. WiletsI. RoufsJ.B. AntonioJ. The effects of pyruvate supplementation on body composition in overweight individuals.Nutrition199915533734010.1016/S0899‑9007(99)00034‑9 10355844
    [Google Scholar]
  261. JaneM. McKayJ. PalS. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review.Nutrition201957849110.1016/j.nut.2018.05.036 30153584
    [Google Scholar]
  262. NeilE.S. McGinleyJ.N. FitzgeraldV.K. LauckC.A. TabkeJ.A. Streeter-McDonaldM.R. YaoL. BroecklingC.D. WeirT.L. FosterM.T. ThompsonH.J. White kidney bean (Phaseolus Vulgaris L.) consumption reduces fat accumulation in a polygenic mouse model of obesity.Nutrients20191111278010.3390/nu11112780 31731665
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303316634240822073810
Loading
/content/journals/emiddt/10.2174/0118715303316634240822073810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test