Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

The global prevalence of obesity has surged to epidemic proportions, posing a significant threat to public health in the twenty-first century. Beyond its established association with metabolic diseases, obesity profoundly impacts cardiovascular health, serving as a major risk factor for various cardiovascular illnesses (CVDs), including coronary artery disease, heart failure, hypertension, and stroke. Mechanistically, obesity triggers a cascade of pathophysiological processes, including chronic inflammation and insulin resistance, exacerbating atherosclerosis and endothelial dysfunction. Moreover, obesity correlates with metabolic abnormalities that further elevate the risk of cardiovascular events. As global community has faced the COVID-19 pandemic, and thus, the aftereffects of the pandemic might pose a spectrum of post-viral complications, including cardiovascular sequelae such as myocarditis and arrhythmias. Considering the intersectionality of obesity, COVID-19, and cardiovascular health are imperative, particularly as obese individuals face heightened risks of severe post-COVID-19 effects and subsequent cardiovascular complications. Lifestyle management emerges as a cornerstone in preventing and managing obesity-related cardiovascular risks, encompassing dietary modifications, physical activity, behavioural therapies, and patient education. Embracing innovative approaches, including modulation of gut microbiota and novel drug developments, holds promise in addressing the intricate nexus between obesity and cardiovascular diseases. This review underscores the paramount importance of lifestyle interventions over pharmacological measures, advocating for a comprehensive approach involving healthcare practitioners, researchers, and policymakers to mitigate the long-term cardiovascular consequences of obesity and COVID-19.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303317750250210055338
2025-03-19
2025-10-08
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/12/EMIDDT-25-12-02.html?itemId=/content/journals/emiddt/10.2174/0118715303317750250210055338&mimeType=html&fmt=ahah

References

  1. BenomarY. TaouisM. Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: Pivotal role of resistin/tlr4 pathways.Front. Endocrinol.201910MAR14010.3389/fendo.2019.0014030906281
    [Google Scholar]
  2. WelshA. HammadM. PiñaI.L. KulinskiJ. Obesity and cardiovascular health.Eur. J. Prev. Cardiol.20243181026103510.1093/eurjpc/zwae02538243826
    [Google Scholar]
  3. WangZ. NakayamaT. Inflammation, a link between obesity and cardiovascular disease.Mediators Inflamm.2010201011710.1155/2010/53591820847813
    [Google Scholar]
  4. AhmedB. SultanaR. GreeneM.W. Adipose tissue and insulin resistance in obese.Biomed. Pharmacother.202113711131510.1016/j.biopha.2021.11131533561645
    [Google Scholar]
  5. Basu-RayI. Cardiac Manifestations of Coronavirus (COVID-19); StatPearls2023https://www.ncbi.nlm.nih.gov/books/NBK556152/
  6. QueY. HuC. WanK. HuP. WangR. LuoJ. LiT. PingR. HuQ. SunY. WuX. TuL. DuY. ChangC. XuG. Cytokine release syndrome in COVID-19: A major mechanism of morbidity and mortality.Int. Rev. Immunol.202241221723010.1080/08830185.2021.188424833616462
    [Google Scholar]
  7. XenakiN. BacopoulouF. KokkinosA. NicolaidesN.C. ChrousosG.P. DarviriC. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: a randomized controlled trial.J. Mol. Biochem.201872788430568922
    [Google Scholar]
  8. SadiqI.Z. Lifestyle medicine as a modality for prevention and management of chronic diseases.J. Taibah Univ. Med. Sci.20231851115111710.1016/j.jtumed.2023.04.00137187803
    [Google Scholar]
  9. RippeJ.M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease.Am. J. Lifestyle Med.201813220421210.1177/155982761881239530800027
    [Google Scholar]
  10. TiwariA. BalasundaramP. Public Health Considerations Regarding Obesity. StatPearls : Treasure Island (FL)2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK572122/
    [Google Scholar]
  11. LinX. LiH. Obesity: Epidemiology, pathophysiology, and therapeutics.Front. Endocrinol. (Lausanne)20211270697810.3389/fendo.2021.70697834552557
    [Google Scholar]
  12. AhirwarR. MondalP.R. Prevalence of obesity in India: A systematic review.Diabetes Metab. Syndr.201913131832110.1016/j.dsx.2018.08.03230641719
    [Google Scholar]
  13. GuptaR.D. TamannaN. SiddikaN. HaiderS.S. ApuE.H. HaiderM.R. Obesity and abdominal obesity in indian population: Findings from a nationally representative study of 698,286 participants.Epidemiologia (Basel)20234216317210.3390/epidemiologia402001737218876
    [Google Scholar]
  14. MensahG.A. RothG.A. FusterV. The global burden of cardiovascular diseases and risk factors: 2020 and beyond.J. Am. Coll. Cardiol.201974202529253210.1016/j.jacc.2019.10.00931727292
    [Google Scholar]
  15. AminiM. ZayeriF. SalehiM. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017.BMC Public Health202121140110.1186/s12889‑021‑10429‑033632204
    [Google Scholar]
  16. RosengrenA. SmythA. RangarajanS. RamasundarahettigeC. BangdiwalaS.I. AlHabibK.F. AvezumA. Bengtsson BoströmK. ChifambaJ. GulecS. GuptaR. IgumborE.U. IqbalR. IsmailN. JosephP. KaurM. KhatibR. KrugerI.M. LamelasP. LanasF. LearS.A. LiW. WangC. QuiangD. WangY. Lopez-JaramilloP. MohammadifardN. MohanV. MonyP.K. PoirierP. SrilathaS. SzubaA. TeoK. WielgoszA. YeatesK.E. YusoffK. YusufR. YusufaliA.H. AttaeiM.W. McKeeM. YusufS. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: the Prospective Urban Rural Epidemiologic (PURE) study.Lancet Glob. Health201976e748e76010.1016/S2214‑109X(19)30045‑231028013
    [Google Scholar]
  17. Rice BradleyB.H. Dietary fat and risk for type 2 diabetes: a review of recent research.Curr. Nutr. Rep.20187421422610.1007/s13668‑018‑0244‑z30242725
    [Google Scholar]
  18. Salas-SalvadóJ. Becerra-TomásN. García-GavilánJ.F. BullóM. BarrubésL. Mediterranean Diet and cardiovascular disease prevention: What do we know?Prog. Cardiovasc. Dis.2018611626710.1016/j.pcad.2018.04.00629678447
    [Google Scholar]
  19. ShivelyC.A. ApptS.E. VitolinsM.Z. UbersederB. MichalsonK.T. Silverstein-MetzlerM.G. RegisterT.C. Mediterranean versus western diet effects on caloric intake, obesity, metabolism, and hepatosteatosis in nonhuman primates.Obesity (Silver Spring)201927577778410.1002/oby.2243631012294
    [Google Scholar]
  20. Clemente-SuárezV.J. Beltrán-VelascoA.I. Redondo-FlórezL. Martín-RodríguezA. Tornero-AguileraJ.F. Global impacts of western diet and its effects on metabolism and health: A narrative review.Nutrients20231512274910.3390/nu1512274937375654
    [Google Scholar]
  21. ZinöckerM. LindsethI. The western diet–microbiome-host interaction and its role in metabolic disease.Nutrients201810336510.3390/nu1003036529562591
    [Google Scholar]
  22. NaudeC.E. SchooneesA. NguyenK.A. SenekalM. YoungT. GarnerP. ChaplinM. VolminkJ. Low carbohydrate versus balanced carbohydrate diets for reducing weight and cardiovascular risk.Cochrane Database Syst. Rev.201911CD01333410.1002/14651858.CD01333435088407
    [Google Scholar]
  23. SrourB. FezeuL.K. Kesse-GuyotE. AllèsB. MéjeanC. AndrianasoloR.M. ChazelasE. DeschasauxM. HercbergS. GalanP. MonteiroC.A. JuliaC. TouvierM. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé).BMJ2019365l145110.1136/bmj.l145131142457
    [Google Scholar]
  24. JuulF. VaideanG. LinY. DeierleinA.L. ParekhN. Ultra-processed foods and incident cardiovascular disease in the framingham offspring study.J. Am. Coll. Cardiol.202177121520153110.1016/j.jacc.2021.01.04733766258
    [Google Scholar]
  25. González OlmoB.M. ButlerM.J. BarrientosR.M. Evolution of the human diet and its impact on gut microbiota, immune responses, and brain health.Nutrients202113119610.3390/nu1301019633435203
    [Google Scholar]
  26. HallK.D. AyuketahA. BrychtaR. CaiH. CassimatisT. ChenK.Y. ChungS.T. CostaE. CourvilleA. DarceyV. FletcherL.A. FordeC.G. GharibA.M. GuoJ. HowardR. JosephP.V. McGeheeS. OuwerkerkR. RaisingerK. RozgaI. StaglianoM. WalterM. WalterP.J. YangS. ZhouM. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake.Cell Metab.20193016777.e310.1016/j.cmet.2019.05.00831105044
    [Google Scholar]
  27. SilvaF.M. GiattiL. de FigueiredoR.C. MolinaM.C.B. de Oliveira CardosoL. DuncanB.B. BarretoS.M. Consumption of ultra-processed food and obesity: cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008–2010).Public Health Nutr.2018211222712279 https://pubmed.ncbi.nlm.nih.gov/29642958/ 10.1017/S136898001800086129642958
    [Google Scholar]
  28. DebrasC. ChazelasE. SellemL. PorcherR. Druesne-PecolloN. EsseddikY. de EdelenyiF.S. AgaësseC. De SaA. LutchiaR. FezeuL.K. JuliaC. Kesse-GuyotE. AllèsB. GalanP. HercbergS. Deschasaux-TanguyM. HuybrechtsI. SrourB. TouvierM. Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort.BMJ2022378e07120410.1136/bmj‑2022‑07120436638072
    [Google Scholar]
  29. TouvierM. da Costa LouzadaM.L. MozaffarianD. BakerP. JuulF. SrourB. Ultra-processed foods and cardiometabolic health: public health policies to reduce consumption cannot wait.BMJ2023383e075294https://www.bmj.com/content/383/bmj-2023-07529410.1136/bmj‑2023‑07529437813465
    [Google Scholar]
  30. RobinsonE. Almiron-RoigE. RuttersF. de GraafC. FordeC.G. Tudur SmithC. NolanS.J. JebbS.A. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger.Am. J. Clin. Nutr.20141001123151 https://pubmed.ncbi.nlm.nih.gov/24847856/ 10.3945/ajcn.113.08174524847856
    [Google Scholar]
  31. JuulF. Martinez-SteeleE. ParekhN. MonteiroC.A. ChangV.W. Ultra-processed food consumption and excess weight among US adults.Br. J. Nutr.201812019010010.1017/S000711451800104629729673
    [Google Scholar]
  32. GrilloA. SalviL. CoruzziP. SalviP. ParatiG. Sodium intake and hypertension.Nutrients2019119197010.3390/nu1109197031438636
    [Google Scholar]
  33. WheltonP.K. HeJ. Health effects of sodium and potassium in humans.Curr. Opin. Lipidol.2014251757910.1097/MOL.000000000000003324345983
    [Google Scholar]
  34. HeF.J. LiJ. MacGregorG.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials.BMJ2013346apr03 3f132510.1136/bmj.f132523558162
    [Google Scholar]
  35. WoodruffR.C. ZhaoL. AhujaJ.K.C. GillespieC. GoldmanJ. HarrisD.M. JacksonS.L. MoshfeghA. RhodesD. SebastianR.S. TerryA. CogswellM.E. Top food category contributors to sodium and potassium intake - United States, 2015-2016.MMWR Morb. Mortal. Wkly. Rep.202069321064106910.15585/mmwr.mm6932a332790654
    [Google Scholar]
  36. PilicL. PedlarC.R. MavrommatisY. Salt-sensitive hypertension: mechanisms and effects of dietary and other lifestyle factors.Nutr. Rev.20167410645658https://pubmed.ncbi.nlm.nih.gov/27566757/10.1093/nutrit/nuw02827566757
    [Google Scholar]
  37. CalvoM.S. MoshfeghA.J. TuckerK.L. Assessing the health impact of phosphorus in the food supply: issues and considerations.Adv. Nutr.20145110411310.3945/an.113.00486124425729
    [Google Scholar]
  38. RussoG. BarbatoF. MitaD.G. GrumettoL. Occurrence of Bisphenol A and its analogues in some foodstuff marketed in Europe.Food Chem. Toxicol.201913111057510.1016/j.fct.2019.11057531201899
    [Google Scholar]
  39. HartleJ.C. Navas-AcienA. LawrenceR.S. The consumption of canned food and beverages and urinary Bisphenol A concentrations in NHANES 2003–2008.Environ. Res.201615037538210.1016/j.envres.2016.06.00827362993
    [Google Scholar]
  40. PengC.Y. TsaiE.M. KaoT.H. LaiT.C. LiangS.S. ChiuC.C. WangT.N. Canned food intake and urinary bisphenol a concentrations: a randomized crossover intervention study.Environ. Sci. Pollut. Res. Int.20192627279992800910.1007/s11356‑019‑05534‑y31352597
    [Google Scholar]
  41. KoestelZ.L. BackusR.C. TsurutaK. SpollenW.G. JohnsonS.A. JavurekA.B. EllersieckM.R. WiedmeyerC.E. KannanK. XueJ. BivensN.J. GivanS.A. RosenfeldC.S. BisphenolA. Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA.Sci. Total Environ.20175791804181410.1016/j.scitotenv.2016.11.16227932218
    [Google Scholar]
  42. ChaudhuriJ. BainsY. GuhaS. KahnA. HallD. BoseN. GugliucciA. KapahiP. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality.Cell Metab.201828333735210.1016/j.cmet.2018.08.01430184484
    [Google Scholar]
  43. Portero-OtinM. de la MazaM.P. UribarriJ. Dietary advanced glycation end products: their role in the insulin resistance of aging.Cells20231213168410.3390/cells1213168437443718
    [Google Scholar]
  44. BoulangéC.L. NevesA.L. ChillouxJ. NicholsonJ.K. DumasM.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.Genome Med.20168142https://pubmed.ncbi.nlm.nih.gov/27098727/210.1186/s13073‑016‑0303‑227098727
    [Google Scholar]
  45. SomnukS. KomindrS. MonkhaiS. PoolsawatT. NakphaichitM. WanikornB. Metabolic and inflammatory profiles, gut microbiota and lifestyle factors in overweight and normal weight young thai adults.PLoS One2023187e028828610.1371/journal.pone.028828637450433
    [Google Scholar]
  46. LichtensteinA.H. AppelL.J. VadivelooM. HuF.B. Kris-EthertonP.M. RebholzC.M. SacksF.M. ThorndikeA.N. Van HornL. Wylie-RosettJ. 2021 Dietary guidance to improve cardiovascular health: a scientific statement from the american heart association.Circulation202114423e472e48710.1161/CIR.000000000000103134724806
    [Google Scholar]
  47. HamiltonM.T. HamiltonD.G. ZdericT.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease.Diabetes200756112655266710.2337/db07‑088217827399
    [Google Scholar]
  48. MatthewsC.E. GeorgeS.M. MooreS.C. BowlesH.R. BlairA. ParkY. TroianoR.P. HollenbeckA. SchatzkinA. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults.Am. J. Clin. Nutr.201295243744510.3945/ajcn.111.01962022218159
    [Google Scholar]
  49. BiswasA. OhP.I. FaulknerG.E. BajajR.R. SilverM.A. MitchellM.S. AlterD.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis.Ann. Intern. Med.2015162212313210.7326/M14‑165125599350
    [Google Scholar]
  50. HardyL.L. Denney-WilsonE. ThriftA.P. OkelyA.D. BaurL.A. Screen time and metabolic risk factors among adolescents.Arch. Pediatr. Adolesc. Med.2010164764364910.1001/archpediatrics.2010.8820603465
    [Google Scholar]
  51. BeunzaJ.J. Martínez-GonzálezM.Á. EbrahimS. Bes-RastrolloM. NúñezJ. MartínezJ.A. AlonsoA. Sedentary behaviors and the risk of incident hypertension: the SUN Cohort.Am. J. Hypertens.200720111156116217954361
    [Google Scholar]
  52. TwinamasikoB. LukengeE. NabawangaS. NansalireW. KobusingyeL. RuzaazaG. BajunirweF. Sedentary lifestyle and hypertension in a periurban area of mbarara, south western uganda: A population based cross sectional survey.Int. J. Hypertens.201820181810.1155/2018/825394829854432
    [Google Scholar]
  53. KoyanagiA. StubbsB. VancampfortD. Correlates of sedentary behavior in the general population: A cross-sectional study using nationally representative data from six low- and middle-income countries.PLoS One2018138e020222210.1371/journal.pone.020222230096192
    [Google Scholar]
  54. StamatakisE. GaleJ. BaumanA. EkelundU. HamerM. DingD. Sitting Time, physical activity, and risk of mortality in adults.J. Am. Coll. Cardiol.201973162062207210.1016/j.jacc.2019.02.03131023430
    [Google Scholar]
  55. ZdericT.W. HamiltonM.T. Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity.J. Appl. Physiol. (1985)20061001249257
    [Google Scholar]
  56. BeyL. HamiltonM.T. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: A molecular reason to maintain daily low-intensity activity.J. Physiol.2003551267368210.1113/jphysiol.2003.04559112815182
    [Google Scholar]
  57. TremblayM.S. AubertS. BarnesJ.D. SaundersT.J. CarsonV. Latimer-CheungA.E. ChastinS.F.M. AltenburgT.M. ChinapawM.J.M. SBRN Terminology Consensus Project Participants Sedentary behavior research network (sbrn) - terminology consensus project process and outcome.Int. J. Behav. Nutr. Phys. Act.20171417510.1186/s12966‑017‑0525‑828599680
    [Google Scholar]
  58. CerielloA. CerielloD.A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus.Diabetes Metab. Res. Rev.200016212513210.1002/(SICI)1520‑7560(200003/04)16:2<125::AID‑DMRR90>3.0.CO;2‑410751752
    [Google Scholar]
  59. STEPS 2016.Available from: https://extranet.who.int/ncdsmicrodata/index.php/catalog/270
  60. FowlesJ. DybingE. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke.Tob. Control200312442443010.1136/tc.12.4.42414660781
    [Google Scholar]
  61. BernhardD. RossmannA. WickG. Metals in cigarette smoke.IUBMB Life2005571280580910.1080/1521654050045966716393783
    [Google Scholar]
  62. BernhardD. CsordasA. HendersonB. RossmannA. KindM. WickG. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules.FASEB J.20051991096110710.1096/fj.04‑3192com15985533
    [Google Scholar]
  63. WuD. NishimuraN. KuoV. FiehnO. ShahbazS. Van WinkleL. MatsumuraF. VogelC.F.A. Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E-/- mice.Arterioscler. Thromb. Vasc. Biol.20113161260126710.1161/ATVBAHA.110.22020221441140
    [Google Scholar]
  64. BoisvertW.A. SantiagoR. CurtissL.K. TerkeltaubR.A. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice.J. Clin. Invest.1998101235336310.1172/JCI11959435307
    [Google Scholar]
  65. CelermajerD.S. SorensenK.E. GoochV.M. SpiegelhalterD.J. MillerO.I. SullivanI.D. LloydJ.K. DeanfieldJ.E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis.Lancet199234088281111111510.1016/0140‑6736(92)93147‑F1359209
    [Google Scholar]
  66. ZeiherA.M. SchächingerV. MinnersJ. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function.Circulation19959251094110010.1161/01.CIR.92.5.10947648652
    [Google Scholar]
  67. HammondD. FongG.T. McNeillA. BorlandR. CummingsK.M. Effectiveness of cigarette warning labels in informing smokers about the risks of smoking: Findings from the International Tobacco Control (ITC) Four Country Survey.Tob. Control200615Suppl 3)(Suppl. 3iii19iii2510.1136/tc.2005.01229416754942
    [Google Scholar]
  68. AlbergA.J. ShoplandD.R. CummingsK.M. The 2014 Surgeon General’s report: commemorating the 50th Anniversary of the 1964 Report of the Advisory Committee to the US Surgeon General and updating the evidence on the health consequences of cigarette smoking.Am. J. Epidemiol.2014179440341210.1093/aje/kwt33524436362
    [Google Scholar]
  69. BaruaR.S. AmbroseJ.A. SrivastavaS. DeVoeM.C. Eales-ReynoldsL.J. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells.Circulation2003107182342234710.1161/01.CIR.0000066691.52789.BE12707237
    [Google Scholar]
  70. CelermajerD.S. AdamsM.R. ClarksonP. RobinsonJ. McCredieR. DonaldA. DeanfieldJ.E. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults.N. Engl. J. Med.1996334315015510.1056/NEJM1996011833403038531969
    [Google Scholar]
  71. IsoH. ShimamotoT. SatoS. KoikeK. IidaM. KomachiY. Passive smoking and plasma fibrinogen concentrations.Am. J. Epidemiol.1996144121151115410.1093/oxfordjournals.aje.a0088938956627
    [Google Scholar]
  72. BellisariA. Evolutionary origins of obesity.Obes. Rev.20089216518010.1111/j.1467‑789X.2007.00392.x18257754
    [Google Scholar]
  73. FeinleibM. GarrisonR.J. FabsitzR. ChristianJ.C. HrubecZ. BorhaniN.O. KannelW.B. RosenmanR. SchwartzJ.T. WagnerJ.O. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results.Am. J. Epidemiol.1977106428429510.1093/oxfordjournals.aje.a112464562066
    [Google Scholar]
  74. StunkardA.J. FochT.T. HrubecZ. A twin study of human obesity.JAMA19862561515410.1001/jama.1986.033800100550243712713
    [Google Scholar]
  75. StunkardA.J. SørensenT.I.A. HanisC. TeasdaleT.W. ChakrabortyR. SchullW.J. SchulsingerF. An adoption study of human obesity.N. Engl. J. Med.1986314419319810.1056/NEJM1986012331404013941707
    [Google Scholar]
  76. LakeJ.K. PowerC. ColeT.J. Child to adult body mass index in the 1958 British birth cohort: associations with parental obesity.Arch. Dis. Child.199777537638010.1136/adc.77.5.3769487953
    [Google Scholar]
  77. ElksC.E. HoedM. den ZhaoJ.H. SharpS.J. WarehamN.J. LoosR.J.F. OngK.K. Variability in the heritability of body mass index: a systematic review and meta-regression.Front. Endocrinol.201232910.3389/fendo.2012.0002922645519
    [Google Scholar]
  78. SilventoinenK. JelenkovicA. SundR. HurY.M. YokoyamaY. HondaC. HjelmborgJ. MöllerS. OokiS. AaltonenS. JiF. NingF. PangZ. RebatoE. BusjahnA. KandlerC. SaudinoK.J. JangK.L. CozenW. HwangA.E. MackT.M. GaoW. YuC. LiL. CorleyR.P. HuibregtseB.M. ChristensenK. SkyttheA. KyvikK.O. DeromC.A. VlietinckR.F. LoosR.J.F. HeikkiläK. WardleJ. LlewellynC.H. FisherA. McAdamsT.A. EleyT.C. GregoryA.M. HeM. DingX. Bjerregaard-AndersenM. Beck-NielsenH. SodemannM. TarnokiA.D. TarnokiD.L. StaziM.A. FagnaniC. D’IppolitoC. Knafo-NoamA. MankutaD. AbramsonL. BurtS.A. KlumpK.L. SilbergJ.L. EavesL.J. MaesH.H. KruegerR.F. McGueM. PahlenS. GatzM. ButlerD.A. BartelsM. van BeijsterveldtT.C.E.M. CraigJ.M. SafferyR. FreitasD.L. MaiaJ.A. DuboisL. BoivinM. BrendgenM. DionneG. VitaroF. MartinN.G. MedlandS.E. MontgomeryG.W. ChongY. SwanG.E. KrasnowR. MagnussonP.K.E. PedersenN.L. TyneliusP. LichtensteinP. HaworthC.M.A. PlominR. BayasgalanG. NarandalaiD. HardenK.P. Tucker-DrobE.M. ÖncelS.Y. AlievF. SpectorT. ManginoM. LachanceG. BakerL.A. TuvbladC. DuncanG.E. BuchwaldD. WillemsenG. RasmussenF. GoldbergJ.H. SørensenT.I.A. BoomsmaD.I. KaprioJ. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study.Am. J. Clin. Nutr.2016104237137910.3945/ajcn.116.13025227413137
    [Google Scholar]
  79. SilventoinenK. RokholmB. KaprioJ. SørensenT.I.A. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies.Int. J. Obes.2010341294010.1038/ijo.2009.17719752881
    [Google Scholar]
  80. LutzT.A. WoodsS.C. Overview of animal models of obesity.Curr. Protoc. Pharmacol.2012Chapter 5: Unit5.61.
    [Google Scholar]
  81. AlbuquerqueD. SticeE. Rodríguez-LópezR. MancoL. NóbregaC. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective.Mol. Genet. Genomics201529041191122110.1007/s00438‑015‑1015‑925749980
    [Google Scholar]
  82. RaffanE. DennisR.J. O’DonovanC.J. BeckerJ.M. ScottR.A. SmithS.P. WithersD.J. WoodC.J. ConciE. ClementsD.N. SummersK.M. GermanA.J. MellershC.S. ArendtM.L. IyemereV.P. WithersE. SöderJ. WernerssonS. AnderssonG. Lindblad-TohK. YeoG.S.H. O’RahillyS. A Deletion in the canine POMC gene is associated with weight and appetite in obesity-prone labrador retriever dogs.Cell Metab.201623589390010.1016/j.cmet.2016.04.01227157046
    [Google Scholar]
  83. DayF.R. LoosR.J.F. Developments in obesity genetics in the era of genome-wide association studies.J. Nutrigenet. Nutrigenomics20114422223822056736
    [Google Scholar]
  84. BellA.C. KremerP.J. MagareyA.M. SwinburnB.A. Contribution of ‘noncore’ foods and beverages to the energy intake and weight status of Australian children.Eur. J. Clin. Nutr.200559563964510.1038/sj.ejcn.160209115714218
    [Google Scholar]
  85. HinneyA. VogelC.I.G. HebebrandJ. From monogenic to polygenic obesity: recent advances.Eur. Child Adolesc. Psychiatry201019329731010.1007/s00787‑010‑0096‑620127379
    [Google Scholar]
  86. HerbertA. GerryN.P. McQueenM.B. HeidI.M. PfeuferA. IlligT. WichmannH.E. MeitingerT. HunterD. HuF.B. ColditzG. HinneyA. HebebrandJ. KoberwitzK. ZhuX. CooperR. ArdlieK. LyonH. HirschhornJ.N. LairdN.M. LenburgM.E. LangeC. ChristmanM.F. A common genetic variant is associated with adult and childhood obesity.Science2006312577127928310.1126/science.112477916614226
    [Google Scholar]
  87. FraylingT.M. TimpsonN.J. WeedonM.N. ZegginiE. FreathyR.M. LindgrenC.M. PerryJ.R.B. ElliottK.S. LangoH. RaynerN.W. ShieldsB. HarriesL.W. BarrettJ.C. EllardS. GrovesC.J. KnightB. PatchA.M. NessA.R. EbrahimS. LawlorD.A. RingS.M. Ben-ShlomoY. JarvelinM.R. SovioU. BennettA.J. MelzerD. FerrucciL. LoosR.J.F. BarrosoI. WarehamN.J. KarpeF. OwenK.R. CardonL.R. WalkerM. HitmanG.A. PalmerC.N.A. DoneyA.S.F. MorrisA.D. SmithG.D. HattersleyA.T. McCarthyM.I. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science2007316582688989410.1126/science.114163417434869
    [Google Scholar]
  88. ScuteriA. SannaS. ChenW.M. UdaM. AlbaiG. StraitJ. NajjarS. NagarajaR. OrrúM. UsalaG. DeiM. LaiS. MaschioA. BusoneroF. MulasA. EhretG.B. FinkA.A. WederA.B. CooperR.S. GalanP. ChakravartiA. SchlessingerD. CaoA. LakattaE. AbecasisG.R. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.PLoS Genet.200737e11510.1371/journal.pgen.003011517658951
    [Google Scholar]
  89. DinaC. MeyreD. GallinaS. DurandE. KörnerA. JacobsonP. CarlssonL.M.S. KiessW. VatinV. LecoeurC. DelplanqueJ. VaillantE. PattouF. RuizJ. WeillJ. Levy-MarchalC. HorberF. PotocznaN. HercbergS. Le StunffC. BougnèresP. KovacsP. MarreM. BalkauB. CauchiS. ChèvreJ.C. FroguelP. Variation in FTO contributes to childhood obesity and severe adult obesity.Nat. Genet.200739672472610.1038/ng204817496892
    [Google Scholar]
  90. KilpeläinenT.O. QiL. BrageS. SharpS.J. SonestedtE. DemerathE. AhmadT. MoraS. KaakinenM. SandholtC.H. HolzapfelC. AutenriethC.S. HyppönenE. CauchiS. HeM. KutalikZ. KumariM. StančákováA. MeidtnerK. BalkauB. TanJ.T. ManginoM. TimpsonN.J. SongY. ZillikensM.C. JablonskiK.A. GarciaM.E. JohanssonS. Bragg-GreshamJ.L. WuY. van Vliet-OstaptchoukJ.V. Onland-MoretN.C. ZimmermannE. RiveraN.V. TanakaT. StringhamH.M. SilbernagelG. KanoniS. FeitosaM.F. SnitkerS. RuizJ.R. MetterJ. LarradM.T.M. AtalayM. HakanenM. AminN. Cavalcanti-ProençaC. GrøntvedA. HallmansG. JanssonJ.O. KuusistoJ. KähönenM. LutseyP.L. NolanJ.J. PallaL. PedersenO. PérusseL. RenströmF. ScottR.A. ShunginD. SovioU. TammelinT.H. RönnemaaT. LakkaT.A. UusitupaM. RiosM.S. FerrucciL. BouchardC. MeirhaegheA. FuM. WalkerM. BoreckiI.B. DedoussisG.V. FritscheA. OhlssonC. BoehnkeM. BandinelliS. van DuijnC.M. EbrahimS. LawlorD.A. GudnasonV. HarrisT.B. SørensenT.I.A. MohlkeK.L. HofmanA. UitterlindenA.G. TuomilehtoJ. LehtimäkiT. RaitakariO. IsomaaB. NjølstadP.R. FlorezJ.C. LiuS. NessA. SpectorT.D. TaiE.S. FroguelP. BoeingH. LaaksoM. MarmotM. BergmannS. PowerC. KhawK.T. ChasmanD. RidkerP. HansenT. MondaK.L. IlligT. JärvelinM.R. WarehamN.J. HuF.B. GroopL.C. Orho-MelanderM. EkelundU. FranksP.W. LoosR.J.F. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.PLoS Med.2011811e100111610.1371/journal.pmed.100111622069379
    [Google Scholar]
  91. BellC.G. FinerS. LindgrenC.M. WilsonG.A. RakyanV.K. TeschendorffA.E. AkanP. StupkaE. DownT.A. ProkopenkoI. MorisonI.M. MillJ. PidsleyR. DeloukasP. FraylingT.M. HattersleyA.T. McCarthyM.I. BeckS. HitmanG.A. International Type 2 Diabetes 1q Consortium Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus.PLoS One2010511e1404010.1371/journal.pone.001404021124985
    [Google Scholar]
  92. Heard-CostaN.L. ZillikensM.C. MondaK.L. JohanssonÅ. HarrisT.B. FuM. HarituniansT. FeitosaM.F. AspelundT. EiriksdottirG. GarciaM. LaunerL.J. SmithA.V. MitchellB.D. McArdleP.F. ShuldinerA.R. BielinskiS.J. BoerwinkleE. BrancatiF. DemerathE.W. PankowJ.S. ArnoldA.M. ChenY.D.I. GlazerN.L. McKnightB. PsatyB.M. RotterJ.I. AminN. CampbellH. GyllenstenU. PattaroC. PramstallerP.P. RudanI. StruchalinM. VitartV. GaoX. KrajaA. ProvinceM.A. ZhangQ. AtwoodL.D. DupuisJ. HirschhornJ.N. JaquishC.E. O’DonnellC.J. VasanR.S. WhiteC.C. AulchenkoY.S. EstradaK. HofmanA. RivadeneiraF. UitterlindenA.G. WittemanJ.C.M. OostraB.A. KaplanR.C. GudnasonV. O’ConnellJ.R. BoreckiI.B. van DuijnC.M. CupplesL.A. FoxC.S. NorthK.E. NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium.PLoS Genet.200956e100053910.1371/journal.pgen.100053919557197
    [Google Scholar]
  93. EggerG. SwinburnB. An “ecological” approach to the obesity pandemic.BMJ1997315710647748010.1136/bmj.315.7106.4779284671
    [Google Scholar]
  94. PopkinB.M. Rural areas drive increases in global obesity.Nature2019569775520020110.1038/d41586‑019‑01182‑x31068717
    [Google Scholar]
  95. León-PedrozaJ.I. González-TapiaL.A. del Olmo-GilE. Castellanos-RodríguezD. EscobedoG. González-ChávezA. Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice.Cirugía y Cirujanos (English Edition)201583654355110.1016/j.circen.2015.11.00826159364
    [Google Scholar]
  96. WangW. LeungA.O.W. ChuL.H. WongM.H. Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake.Environ. Pollut.201823877178210.1016/j.envpol.2018.02.08829625301
    [Google Scholar]
  97. VerdeL. Frias-ToralE. CardenasD. Editorial: Environmental factors implicated in obesity.Front. Nutr.202310117150710.3389/fnut.2023.117150737215212
    [Google Scholar]
  98. RibeiroC. MendesV. PeleteiroB. DelgadoI. AraújoJ. AggerbeckM. Association between the exposure to phthalates and adiposity: A meta-analysis in children and adults.Environ Res.201917917910878010.1016/j.envres.2019.108780
    [Google Scholar]
  99. JanesickA.S. BlumbergB. Obesogens: An emerging threat to public health.Am. J. Obstet. Gynecol.2016214555956510.1016/j.ajog.2016.01.18226829510
    [Google Scholar]
  100. BottaM. AudanoM. SahebkarA. SirtoriC. MitroN. RuscicaM. PPAR agonists and metabolic syndrome: An established role?Int. J. Mol. Sci.2018194119710.3390/ijms1904119729662003
    [Google Scholar]
  101. QuijanoL. MarínS. MillanE. YusàV. FontG. PardoO. Dietary exposure and risk assessment of polychlorinated dibenzo- p -dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls of the population in the Region of Valencia (Spain).Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201835474175010.1080/19440049.2017.141496029219742
    [Google Scholar]
  102. CohenD.A. Obesity and the built environment: changes in environmental cues cause energy imbalances.Int. J. Obes.200832S7Suppl. 7S137S14210.1038/ijo.2008.25019136984
    [Google Scholar]
  103. SongY. HauserR. HuF.B. FrankeA.A. LiuS. SunQ. Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women.Int. J. Obes.201438121532153710.1038/ijo.2014.6324722546
    [Google Scholar]
  104. KuhnleinH.V. ReceveurO. Local cultural animal food contributes high levels of nutrients for Arctic Canadian Indigenous adults and children.J. Nutr.200713741110111410.1093/jn/137.4.111017374689
    [Google Scholar]
  105. TripathyJ.P. ThakurJ.S. JeetG. ChawlaS. JainS. PrasadR. Urban rural differences in diet, physical activity and obesity in India: are we witnessing the great Indian equalisation? Results from a cross-sectional STEPS survey.BMC Public Health201616181610.1186/s12889‑016‑3489‑827538686
    [Google Scholar]
  106. RajalaM.W. SchererP.E. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis.Endocrinology200314493765377310.1210/en.2003‑058012933646
    [Google Scholar]
  107. ChenL. ChenR. WangH. LiangF. Mechanisms linking inflammation to insulin resistance.Int. J. Endocrinol.2015201550840910.1155/2015/50840926136779
    [Google Scholar]
  108. ZatteraleF. LongoM. NaderiJ. RacitiG.A. DesiderioA. MieleC. BeguinotF. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.Front. Physiol.202010160710.3389/fphys.2019.0160732063863
    [Google Scholar]
  109. YanY. LiS. LiuY. BazzanoL. HeJ. MiJ. ChenW. The impact of body weight trajectory from childhood on chronic inflammation in adulthood: The Bogalusa Heart Study.Pediatr. Investig.202151212710.1002/ped4.1224833778423
    [Google Scholar]
  110. YeJ. Mechanisms of insulin resistance in obesity.Front. Med.201371142410.1007/s11684‑013‑0262‑623471659
    [Google Scholar]
  111. KlopB. ElteJ. CabezasM. Dyslipidemia in obesity: Mechanisms and potential targets.Nutrients2013541218124010.3390/nu504121823584084
    [Google Scholar]
  112. Gutiérrez-CuevasJ. SantosA. Armendariz-BorundaJ. Pathophysiological molecular mechanisms of obesity: A link between MAFLD and NASH with cardiovascular diseases.Int. J. Mol. Sci.202122211162910.3390/ijms22211162934769060
    [Google Scholar]
  113. SheY. MangatR. TsaiS. ProctorS.D. RichardC. The interplay of obesity, dyslipidemia and immune dysfunction: A brief overview on pathophysiology, animal models, and nutritional modulation.Front. Nutr.2022984020910.3389/fnut.2022.84020935252310
    [Google Scholar]
  114. AlpertM.A. OmranJ. BostickB.P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function.Curr. Obes. Rep.20165442443410.1007/s13679‑016‑0235‑627744513
    [Google Scholar]
  115. AlpertM.A. KarthikeyanK. AbdullahO. GhadbanR. Obesity and cardiac remodeling in adults: Mechanisms and clinical implications.Prog. Cardiovasc. Dis.201861211412310.1016/j.pcad.2018.07.01229990533
    [Google Scholar]
  116. AlpertM.A. OmranJ. MehraA. ArdhanariS. Impact of obesity and weight loss on cardiac performance and morphology in adults.Prog. Cardiovasc. Dis.201456439140010.1016/j.pcad.2013.09.00324438730
    [Google Scholar]
  117. LavieC.J. PandeyA. LauD.H. AlpertM.A. SandersP. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis.J. Am. Coll. Cardiol.201770162022203510.1016/j.jacc.2017.09.00229025560
    [Google Scholar]
  118. KwaifaI.K. BahariH. YongY.K. NoorS.M. Endothelial dysfunction in obesity-induced inflammation: Molecular mechanisms and clinical implications.Biomolecules202010229110.3390/biom1002029132069832
    [Google Scholar]
  119. ElluluM.S. PatimahI. Khaza’aiH. RahmatA. AbedY. Obesity and inflammation: The linking mechanism and the complications.Arch. Med. Sci.20174485186310.5114/aoms.2016.5892828721154
    [Google Scholar]
  120. RenJ. WuN.N. WangS. SowersJ.R. ZhangY. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications.Physiol. Rev.202110141745180710.1152/physrev.00030.202033949876
    [Google Scholar]
  121. JehanS. ZiziF. Pandi-PerumalS.R. WallS. AugusteE. MyersA.K. Jean-LouisG. McFarlaneS.I. Obstructive sleep apnea and obesity: Implications for public health.Sleep Med. Disord.2017140001929517065
    [Google Scholar]
  122. BrigantiG. LechienJ.R. TheateI. SaussezS. An unusual cause of obstructive sleep apnea syndrome.Clin. Case Rep.2019791694169610.1002/ccr3.234531534729
    [Google Scholar]
  123. de FrelD.L. AtsmaD.E. PijlH. SeidellJ.C. LeenenP.J.M. DikW.A. van RossumE.F.C. The impact of obesity and lifestyle on the immune system and susceptibility to infections such as COVID-19.Front. Nutr.2020759760010.3389/fnut.2020.59760033330597
    [Google Scholar]
  124. ZhangW. SiL. Obstructive sleep apnea syndrome (OSAS) and hypertension: Pathogenic mechanisms and possible therapeutic approaches.Ups. J. Med. Sci.2012117437038210.3109/03009734.2012.70725323009224
    [Google Scholar]
  125. QinH. SteenbergenN. GlosM. WesselN. KraemerJ.F. Vaquerizo-VillarF. PenzelT. The different facets of heart rate variability in obstructive sleep apnea.Front. Psychiatry20211264233310.3389/fpsyt.2021.64233334366907
    [Google Scholar]
  126. NtchanaA. ShresthaS. PippinM. Cardiovascular complications of COVID-19: A scoping review of evidence.Cureus20231511e4827510.7759/cureus.4827538054135
    [Google Scholar]
  127. VolpeM. GalloG. Obesity and cardiovascular disease: An executive document on pathophysiological and clinical links promoted by the Italian Society of Cardiovascular Prevention (SIPREC).Front. Cardiovasc. Med.202310113634010.3389/fcvm.2023.113634036993998
    [Google Scholar]
  128. MagadumA. KishoreR. Cardiovascular manifestations of COVID-19 infection.Cells2020911250810.3390/cells911250833228225
    [Google Scholar]
  129. XieY. XuE. BoweB. Al-AlyZ. Long-term cardiovascular outcomes of COVID-19.Nat. Med.202228358359010.1038/s41591‑022‑01689‑335132265
    [Google Scholar]
  130. MohamedM.O. BanerjeeA. Long COVID and cardiovascular disease: A learning health system approach.Nat. Rev. Cardiol.202219528728810.1038/s41569‑022‑00697‑735332308
    [Google Scholar]
  131. SidikS.M. Heart-disease risk soars after COVID — even with a mild case.Nature2022602789856010.1038/d41586‑022‑00403‑035145295
    [Google Scholar]
  132. QueL. LukacsovichD. LuoW. FöldyC. Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus.Nat. Commun.202112110810.1038/s41467‑020‑20328‑433398060
    [Google Scholar]
  133. WangW. WangC.Y. WangS.I. WeiJ.C.C. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks.EClinicalMedicine20225310161910.1016/j.eclinm.2022.10161935971425
    [Google Scholar]
  134. Abou HassanF.F. Bou HamdanM. MelhemN.M. Clinical characteristics and serum cytokines profiling in hospitalized COVID-19 patients in Lebanon.J. Immunol. Res.2023202311110.1155/2023/725858537228441
    [Google Scholar]
  135. MiddletonK.R. AntonS.D. PerriM.G. Long-term adherence to health behavior change.Am. J. Lifestyle Med.20137639540410.1177/155982761348886727547170
    [Google Scholar]
  136. GroupT.D.P.P. The Diabetes Prevention Program (DPP): Description of lifestyle intervention.Diabetes Care200225122165217110.2337/diacare.25.12.216512453955
    [Google Scholar]
  137. YumukV. TsigosC. FriedM. SchindlerK. BusettoL. MicicD. ToplakH. Obesity Management Task Force of the European Association for the Study of Obesity European guidelines for obesity management in adults.Obes. Facts20158640242410.1159/00044272126641646
    [Google Scholar]
  138. HillJ.O. WyattH.R. PetersJ.C. The importance of energy balance.Eur. Endocrinol.20139211111529922364
    [Google Scholar]
  139. RomieuI. DossusL. BarqueraS. BlottièreH.M. FranksP.W. GunterM. HwallaN. HurstingS.D. LeitzmannM. MargettsB. NishidaC. PotischmanN. SeidellJ. StepienM. WangY. WesterterpK. WinichagoonP. WisemanM. WillettW.C. Energy balance and obesity: What are the main drivers?Cancer Causes Control201728324725810.1007/s10552‑017‑0869‑z28210884
    [Google Scholar]
  140. SzallasiA. Capsaicin for weight control: “Exercise in a pill” (or just another fad)?Pharmaceuticals202215785110.3390/ph1507085135890150
    [Google Scholar]
  141. Davani-DavariD. NegahdaripourM. KarimzadehI. SeifanM. MohkamM. MasoumiS. BerenjianA. GhasemiY. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods803009230857316
    [Google Scholar]
  142. SlavinJ. Fiber and prebiotics: Mechanisms and health benefits.Nutrients2013541417143510.3390/nu504141723609775
    [Google Scholar]
  143. WillettW.C. SacksF. TrichopoulouA. DrescherG. Ferro-LuzziA. HelsingE. TrichopoulosD. Mediterranean diet pyramid: A cultural model for healthy eating.Am. J. Clin. Nutr.1995616Suppl.1402S1406S10.1093/ajcn/61.6.1402S7754995
    [Google Scholar]
  144. SikalidisA.K. KelleherA.H. KristoA.S. WangH.H.X. Mediterranean Diet.Encyclopedia20211237138710.3390/encyclopedia1020031
    [Google Scholar]
  145. BillingsleyH.E. CarboneS. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED.Nutr. Diabetes2018811310.1038/s41387‑018‑0025‑129549354
    [Google Scholar]
  146. SikandG. SeversonT. Top 10 dietary strategies for atherosclerotic cardiovascular risk reduction.Am. J. Prev. Cardiol.2020410010610.1016/j.ajpc.2020.10010634327475
    [Google Scholar]
  147. McMackenM. ShahS. A plant-based diet for the prevention and treatment of type 2 diabetes.J. Geriatr. Cardiol.201714534235428630614
    [Google Scholar]
  148. MilenkovicT. BozhinovskaN. MacutD. Bjekic-MacutJ. RahelicD. Velija AsimiZ.V. BurekovicA. Mediterranean diet and type 2 diabetes mellitus: A perpetual inspiration for the scientific world. A review.Nutrients2021134130710.3390/nu1304130733920947
    [Google Scholar]
  149. TysonC.C. NwankwoC. LinP.H. SvetkeyL.P. The Dietary Approaches to Stop Hypertension (DASH) eating pattern in special populations.Curr. Hypertens. Rep.201214538839610.1007/s11906‑012‑0296‑122846984
    [Google Scholar]
  150. CampbellA.P. DASH eating plan: An eating pattern for diabetes management.Diabetes Spectr.2017302768110.2337/ds16‑008428588372
    [Google Scholar]
  151. CoxC.E. Role of physical activity for weight loss and weight maintenance.Diabetes Spectr.201730315716010.2337/ds17‑001328848307
    [Google Scholar]
  152. ChaputJ.P. KlingenbergL. RosenkildeM. GilbertJ.A. TremblayA. SjödinA. Physical activity plays an important role in body weight regulation.J. Obes.2011201111110.1155/2011/36025720847894
    [Google Scholar]
  153. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. Obesity and cardiovascular disease: A scientific statement from the american heart association.Circulation202114321e984e101010.1161/CIR.000000000000097333882682
    [Google Scholar]
  154. RoyA. RawalI. JabbourS. PrabhakaranD. Tobacco and cardiovascular Disease: A Summary of Evidence.201710.1596/978‑1‑4648‑0518‑9_ch4
    [Google Scholar]
  155. SalahuddinS. PrabhakaranD. RoyA. Pathophysiological mechanisms of tobacco-related CVD.Glob. Heart20127211312010.1016/j.gheart.2012.05.00325691307
    [Google Scholar]
  156. EmmaR. CarusoM. CampagnaD. PulvirentiR. Li VoltiG. The impact of tobacco cigarettes, vaping products and tobacco heating products on oxidative stress.Antioxidants2022119182910.3390/antiox1109182936139904
    [Google Scholar]
  157. TasnimS. TangC. MusiniV.M. WrightJ.M. Effect of alcohol on blood pressure.Cochrane Database Syst. Rev.202077CD01278732609894
    [Google Scholar]
  158. HusainK. AnsariR.A. FerderL. Alcohol-induced hypertension: Mechanism and prevention.World J. Cardiol.20146524525210.4330/wjc.v6.i5.24524891935
    [Google Scholar]
  159. KumarR. RizviM.R. SaraswatS. Obesity and Stress. A contingent paralysisInt. J. Prev. Med.20221319510.4103/ijpvm.IJPVM_427_2035958362
    [Google Scholar]
  160. AbrahamS.B. RubinoD. SinaiiN. RamseyS. NiemanL.K. Cortisol, obesity, and the metabolic syndrome: A cross-sectional study of obese subjects and review of the literature.Obesity (Silver Spring)2013211E105E11710.1002/oby.2008323505190
    [Google Scholar]
  161. van der ValkE.S. SavasM. van RossumE.F.C. Stress and obesity: Are there more susceptible individuals?Curr. Obes. Rep.20187219320310.1007/s13679‑018‑0306‑y29663153
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303317750250210055338
Loading
/content/journals/emiddt/10.2174/0118715303317750250210055338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test