Skip to content
2000
image of Recent Advances and Opportunities in Cancer Cell Targeting by Surface Decoration: A Review

Abstract

Recently, polymeric systems have emerged as the most practical and adaptable delivery method for targeted cancer therapy. Surface functionalization of polymers is one of the delivery methods of targeted drugs. For instance, to increase the selectivity and affinity of polymers for cancer cells, targeting moieties are covalently bonded on their surface. The surface decoration of polymers with a particular tumor-homing ligand, such as an antibody, an antibody fragment, a peptide, an aptamer, a polysaccharide, a saccharide, folic acid, . may also increase drug retention and accumulation in the tumor vasculature as well as promote efficient internalization by target tumor cells. This study discusses the recent development of polymeric systems coupled with particular targeting ligands for cancer cell targeting. Additionally, attention is given to the various polymers utilized in cancer therapy and how their surface decoration contributes to cancer cell targeting.We conclude that the surface-modified polymeric system in cancer cell targeting has emerged as a promising platform for safe and effective cancer therapy with the potential to maximize therapeutic efficacy while minimizing systemic side effects.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128365466250214093327
2025-03-19
2025-08-18
Loading full text...

Full text loading...

References

  1. Reddy K.T.K. Reddy A.S. Recent breakthroughs in drug delivery systems for targeted cancer therapy: an overview. Cellular, Mol. Biomed. Rep. 2025 5 1 13 27 10.55705/cmbr.2025.456494.1246
    [Google Scholar]
  2. Tichansky D.S. Cagir B. Borrazzo E. Topham A. Palazzo J. Weaver E.J. Lange A. Fry R.D. Risk of second cancers in patients with colorectal carcinoids. Dis. Colon Rectum 2002 45 1 91 97 10.1007/s10350‑004‑6119‑y 11786770
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018 68 1 7 30 10.3322/caac.21442 29313949
    [Google Scholar]
  5. Romano F. Di Scipio F. Baima G. Franco F. Aimetti M. Berta G.N. Health-related quality of life in juvenile idiopathic arthritis: A systematic review of phase III clinical trials. J. Clin. Med. 2025 14 1 254 259 10.3390/jcm14010254 39797336
    [Google Scholar]
  6. Naidu M.U.R. Ramana G.V. Rani P.U. Mohan K. Suman A. Roy P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis--Complicating the treatment of cancer. Neoplasia 2004 6 5 423 431 10.1593/neo.04169 15548350
    [Google Scholar]
  7. Wong H. Bendayan R. Rauth A. Li Y. Wu X. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007 59 6 491 504 10.1016/j.addr.2007.04.008 17532091
    [Google Scholar]
  8. El-Say K.M. El-Sawy H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017 528 1-2 675 691 10.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  9. Katiyar S.S. Muntimadugu E. Rafeeqi T.A. Domb A.J. Khan W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016 23 7 2608 2616 10.3109/10717544.2015.1039667 26036652
    [Google Scholar]
  10. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  11. Kaushik N. Borkar S.B. Nandanwar S.K. Panda P.K. Choi E.H. Kaushik N.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J. Nanobiotechnol. 2022 20 1 152 10.1186/s12951‑022‑01364‑2 35331246
    [Google Scholar]
  12. Ghaz-Jahanian M.A. Abbaspour-Aghdam F. Anarjan N. Berenjian A. Jafarizadeh-Malmiri H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol. 2015 57 3 201 218 10.1007/s12033‑014‑9816‑3 25385004
    [Google Scholar]
  13. Veiseh O. Gunn J.W. Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010 62 3 284 304 10.1016/j.addr.2009.11.002 19909778
    [Google Scholar]
  14. Wolfram J. Ferrari M. Clinical cancer nanomedicine. Nano Today 2019 25 85 98 10.1016/j.nantod.2019.02.005 31360214
    [Google Scholar]
  15. Bar-Zeev M. Livney Y.D. Assaraf Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017 31 15 30 10.1016/j.drup.2017.05.002 28867241
    [Google Scholar]
  16. Soe Z.C. Kwon J.B. Thapa R.K. Ou W. Nguyen H.T. Gautam M. Oh K.T. Choi H.G. Ku S.K. Yong C.S. Kim J.O. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics 2019 11 2 63 69 10.3390/pharmaceutics11020063 30717256
    [Google Scholar]
  17. Morarasu S. Morarasu B.C. Ghiarasim R. Coroaba A. Tiron C. Iliescu R. Dimofte G.M. Targeted cancer therapy via ph-functionalized nanoparticles: A scoping review of methods and outcomes. Gels 2022 8 4 232 241 10.3390/gels8040232 35448133
    [Google Scholar]
  18. Blank C.U. Haanen J.B. Ribas A. Schumacher T.N. The “cancer immunogram”. Science 2016 352 6286 658 660 10.1126/science.aaf2834 27151852
    [Google Scholar]
  19. Mrdenovic S. Wang Y. Yin L. Chu G.C.Y. Ou Y. Lewis M.S. Heffer M. Posadas E.M. Zhau H.E. Chung L.W.K. Edderkaoui M. Pandol S.J. Wang R. Zhang Y. A cisplatin conjugate with tumor cell specificity exhibits antitumor effects in renal cancer models. BMC Cancer 2023 23 1 499 10.1186/s12885‑023‑10878‑3 37268911
    [Google Scholar]
  20. Torchilin V.P. Drug targeting. Eur. J. Pharm. Sci. 2000 11 Suppl. 2 S81 S91 10.1016/S0928‑0987(00)00166‑4 11033430
    [Google Scholar]
  21. Arias J.L. Drug targeting strategies in cancer treatment: An overview. Mini Rev. Med. Chem. 2011 11 1 1 17 10.2174/138955711793564024 21235512
    [Google Scholar]
  22. Luqmani Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005 14 Suppl. 1 35 48 10.1159/000086183 16103712
    [Google Scholar]
  23. Housman G. Byler S. Heerboth S. Lapinska K. Longacre M. Snyder N. Sarkar S. Drug resistance in cancer: An overview. Cancers 2014 6 3 1769 1792 10.3390/cancers6031769 25198391
    [Google Scholar]
  24. Welter M. Rieger H. Interstitial fluid flow and drug delivery in vascularized tumors: A computational model. PLoS One 2013 8 8 e70395 10.1371/journal.pone.0070395 23940570
    [Google Scholar]
  25. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  26. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C 2016 60 569 578 10.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  27. Seidu T.A. Kutoka P.T. Asante D.O. Farooq M.A. Alolga R.N. Bo W. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics 2022 14 5 1113 1121 10.3390/pharmaceutics14051113 35631699
    [Google Scholar]
  28. Tekade R.K. Maheshwari R. Soni N. Tekade M. Chougule M.B. Nanotechnology for the development of nanomedicine. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Elsevier 2017 3 61 10.1016/B978‑0‑12‑809717‑5.00001‑4
    [Google Scholar]
  29. Moura L.I.F. Malfanti A. Peres C. Matos A.I. Guegain E. Sainz V. Zloh M. Vicent M.J. Florindo H.F. Functionalized branched polymers: Promising immunomodulatory tools for the treatment of cancer and immune disorders. Mater. Horiz. 2019 6 10 1956 1973 10.1039/C9MH00628A
    [Google Scholar]
  30. Eskandari M. Hosseini S.H. Adeli M. Pourjavadi A. Polymer-functionalized carbon nanotubes in cancer therapy: A review. Iran. Polym. J. 2014 23 5 387 403 10.1007/s13726‑014‑0228‑9
    [Google Scholar]
  31. Barbas A.S. White R.R. The development and testing of aptamers for cancer. Curr. Opin. Investig. Drugs 2009 10 6 572 578
    [Google Scholar]
  32. Zwicke G.L. Ali Mansoori G. Jeffery C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012 3 1 18496 10.3402/nano.v3i0.18496 23240070
    [Google Scholar]
  33. Jiménez-Gómez C.P. Cecilia J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020 25 17 3981 4001 10.3390/molecules25173981 32882899
    [Google Scholar]
  34. Sanchez-Salvador J.L. Balea A. Monte M.C. Negro C. Blanco A. Chitosan grafted/cross-linked with biodegradable polymers: A review. Int. J. Biol. Macromol. 2021 178 325 343 10.1016/j.ijbiomac.2021.02.200 33652051
    [Google Scholar]
  35. Fu S. Xia J. Wu J. Functional chitosan nanoparticles in cancer treatment. J. Biomed. Nanotechnol. 2016 12 8 1585 1603 10.1166/jbn.2016.2228 29341581
    [Google Scholar]
  36. Maya S. Kumar L.G. Sarmento B. Sanoj Rejinold N. Menon D. Nair S.V. Jayakumar R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr. Polym. 2013 93 2 661 669 10.1016/j.carbpol.2012.12.032 23499109
    [Google Scholar]
  37. Iravani Kashkouli K. Torkzadeh-Mahani M. Mosaddegh E. Synthesis and characterization of aminotetrazole-functionalized magnetic chitosan nanocomposite as a novel nanocarrier for targeted gene delivery. Mater. Sci. Eng. C 2018 89 166 174 10.1016/j.msec.2018.03.032 29752086
    [Google Scholar]
  38. Akinyelu J. Singh M. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl. Nanosci. 2019 9 1 7 17 10.1007/s13204‑018‑0896‑4
    [Google Scholar]
  39. Lee S.J. Min H.S. Ku S.H. Son S. Kwon I.C. Kim S.H. Kim K. Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine 2014 9 11 1697 1713 10.2217/nnm.14.99 25321170
    [Google Scholar]
  40. Qian Q. Niu S. Williams G.R. Wu J. Zhang X. Zhu L.M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2019 564 122 130 10.1016/j.colsurfa.2018.12.026
    [Google Scholar]
  41. Geethakumari D. Bhaskaran Sathyabhama A. Raji Sathyan K. Mohandas D. Somasekharan J.V. Thavarool Puthiyedathu S. Folate functionalized chitosan nanoparticles as targeted delivery systems for improved anticancer efficiency of cytarabine in MCF-7 human breast cancer cell lines. Int. J. Biol. Macromol. 2022 199 150 161 10.1016/j.ijbiomac.2021.12.070 34973988
    [Google Scholar]
  42. Fathi M. Zangabad P.S. Aghanejad A. Barar J. Erfan-Niya H. Omidi Y. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib. Carbohydr. Polym. 2017 172 130 141 10.1016/j.carbpol.2017.05.007 28606519
    [Google Scholar]
  43. Prabaharan M. Prospective of guar gum and its derivatives as controlled drug delivery systems. Int. J. Biol. Macromol. 2011 49 2 117 124 10.1016/j.ijbiomac.2011.04.022 21596058
    [Google Scholar]
  44. Sharma B. Kumar V. Soni P. Carbamoylethylation of guar gum. Carbohydr. Polym. 2004 58 4 449 453 10.1016/j.carbpol.2004.08.013
    [Google Scholar]
  45. Sharma M. Malik R. Verma A. Dwivedi P. Banoth G.S. Pandey N. Sarkar J. Mishra P.R. Dwivedi A.K. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J. Biomed. Nanotechnol. 2013 9 1 96 106 10.1166/jbn.2013.1474 23627072
    [Google Scholar]
  46. Khatik R. Dwivedi P. Upadhyay M. Patel V.K. Paliwal S.K. Dwivedi A.K. Toxicological evaluation and targeting tumor cells through folic acid modified guar gum nanoparticles of curcumin. J. Biomater. Tissue Eng. 2014 4 2 143 149 10.1166/jbt.2014.1147
    [Google Scholar]
  47. Ramani J. Alle M. Sharma G. Reddy K.V.N.S. Park Y. Rao K.S.V.K. Kim J.C. Guar gum-g-poly(N-acryloyl-L-phenyl alanine) based pH responsive smart hydrogels for in-vitro anticancer drug delivery. Soft Mater. 2022 20 3 329 343 10.1080/1539445X.2022.2041033
    [Google Scholar]
  48. Jana P. Ghosh S. Sarkar K. Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. Int. J. Biol. Macromol. 2020 161 1149 1160 10.1016/j.ijbiomac.2020.06.090 32553957
    [Google Scholar]
  49. Praphakar R.A. Jeyaraj M. Mehnath S. Higuchi A. Ponnamma D. Sadasivuni K.K. Rajan M. A pH-sensitive guar gum- grafted -lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J. Mater. Chem. B Mater. Biol. Med. 2018 6 10 1519 1530 10.1039/C7TB02551C 32254216
    [Google Scholar]
  50. Karim A.A. Bhat R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci. Technol. 2008 19 12 644 656 10.1016/j.tifs.2008.08.001
    [Google Scholar]
  51. Alipal J. Mohd Pu’ad N.A.S. Lee T.C. Nayan N.H.M. Sahari N. Basri H. Idris M.I. Abdullah H.Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021 42 240 250 10.1016/j.matpr.2020.12.922
    [Google Scholar]
  52. Van Vlierberghe S. Vanderleyden E. Boterberg V. Dubruel P. Gelatin functionalization of biomaterial surfaces: Strategies for immobilization and visualization. Polymers 2011 3 1 114 130 10.3390/polym3010114
    [Google Scholar]
  53. Bello A.B. Kim D. Kim D. Park H. Lee S.H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng. Part B Rev. 2020 26 2 164 180 10.1089/ten.teb.2019.0256 31910095
    [Google Scholar]
  54. Jain A. Gulbake A. Jain A. Shilpi S. Hurkat P. Jain A. Jain S.K. Development of surface-functionalised nanoparticles for FGF2 receptor-based solid tumour targeting. J. Microencapsul. 2012 29 1 95 102 10.3109/02652048.2011.635219 22126313
    [Google Scholar]
  55. Benson J.R. Jatoi I. The global breast cancer burden. Future Oncol. 2012 8 6 697 702 10.2217/fon.12.61 22764767
    [Google Scholar]
  56. Tiwaria J. Gargb A. Jaina A. fabrication of gelatin functionalized carbon nanotubes system for the site-specific delivery of curcumin towards breast cancer cell. Plant Arch. 2020 20 4316 4325
    [Google Scholar]
  57. Wang X. Niu D. Hu C. Li P. Polyethyleneimine-based nanocarriers for gene delivery. Curr. Pharm. Des. 2015 21 42 6140 6156 10.2174/1381612821666151027152907 26503146
    [Google Scholar]
  58. Nguyen H-K. Lemieux P. Vinogradov S.V. Gebhart C.L. Guérin N. Paradis G. Bronich T.K. Alakhov V.Y. Kabanov A.V. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 2000 7 2 126 138 10.1038/sj.gt.3301052 10673718
    [Google Scholar]
  59. Teo P.Y. Yang C. Whilding L.M. Parente-Pereira A.C. Maher J. George A.J.T. Hedrick J.L. Yang Y.Y. Ghaem-Maghami S. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: Strategies to enhance T cell killing. Adv. Healthc. Mater. 2015 4 8 1180 1189 10.1002/adhm.201500089 25866054
    [Google Scholar]
  60. Mohammadi M. Salmasi Z. Hashemi M. Mosaffa F. Abnous K. Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm. 2015 485 1-2 50 60 10.1016/j.ijpharm.2015.02.031 25712164
    [Google Scholar]
  61. Tian Z. Shi Y. Yin M. Shen H. Jia N. Functionalized multiwalled carbon nanotubes-anticancer drug carriers: Synthesis, targeting ability and antitumor activity. Nano Biomed. Eng. 2011 3 3 11 17 10.5101/nbe.v3i3.p157‑162
    [Google Scholar]
  62. Zhao L. Li Y. Zhu J. Sun N. Song N. Xing Y. Huang H. Zhao J. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnology 2019 17 1 30 10.1186/s12951‑019‑0462‑6 30782154
    [Google Scholar]
  63. Chen D.R. Bei J.Z. Wang S.G. Polycaprolactone microparticles and their biodegradation. Polym. Degrad. Stabil. 2000 67 3 455 459 10.1016/S0141‑3910(99)00145‑7
    [Google Scholar]
  64. Jain D. Yadav A.K. Development of hyaluronic acid–anchored polycaprolactone nanoparticles for efficient delivery of PLK1 siRNA to breast cancer. Drug Deliv. Transl. Res. 2023 13 6 1730 1744 10.1007/s13346‑022‑01288‑2 36641487
    [Google Scholar]
  65. Zhai Y. Zhou X. Zhang Z. Zhang L. Wang D. Wang X. Sun W. Design, synthesis, and characterization of Schiff base bond-linked pH-responsive doxorubicin prodrug based on functionalized mPEG-PCL for targeted cancer therapy. Polymers 2018 10 10 1127 1132 10.3390/polym10101127 30961052
    [Google Scholar]
  66. Mahdaviani P. Bahadorikhalili S. Navaei-Nigjeh M. Vafaei S.Y. Esfandyari-Manesh M. Abdolghaffari A.H. Daman Z. Atyabi F. Ghahremani M.H. Amini M. Lavasanifar A. Dinarvand R. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C 2017 80 301 312 10.1016/j.msec.2017.05.126 28866169
    [Google Scholar]
  67. Zamani M. Aghajanzadeh M. Sharafi A. Rostamizadeh K. Danafar H. Targeted drug delivery via folate decorated nanocarriers based on linear polymer for treatment of breast cancer. Pharm. Dev. Technol. 2022 27 1 19 24 10.1080/10837450.2021.2018457 34895033
    [Google Scholar]
  68. Lale S.V. R G A. Aravind A. Kumar D.S. Koul V. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules 2014 15 5 1737 1752 10.1021/bm5001263 24689987
    [Google Scholar]
  69. Kumar P.V. Sheng T.M. A new approach for β-cyclodextrin conjugated drug delivery system in cancer therapy. Curr. Drug Deliv. 2022 19 3 266 300 10.2174/1567201818666211006103452 34620064
    [Google Scholar]
  70. Das M. Solanki A. Joshi A. Devkar R. Seshadri S. Thakore S. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydr. Polym. 2019 206 694 705 10.1016/j.carbpol.2018.11.049 30553374
    [Google Scholar]
  71. Imperio D. Grolla A.A. Moro M. Bortolotto V. Del Grosso E. Genazzani A.A. Panza L. Functionalization of β-cyclodextrin with a urea-based PSMA ligand and preliminary studies on targeting prostate cancer cells. Bioorg. Med. Chem. Lett. 2022 73 128890 10.1016/j.bmcl.2022.128890 35839965
    [Google Scholar]
  72. Zhu P. Chen L. Zhao Y. Gao C. Yang J. Liao X. Liu D. Yang B. A novel host-guest complex based on biotin functionalized polyamine-β-cyclodextrin for tumor targeted delivery of luteolin. J. Mol. Struct. 2021 1237 130339 10.1016/j.molstruc.2021.130339
    [Google Scholar]
  73. Nayak J. Prajapati K.S. Kumar S. Vashistha V.K. Sahoo S.K. Kumar R. Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy. Mater. Today Commun. 2022 33 104644 10.1016/j.mtcomm.2022.104644
    [Google Scholar]
  74. Kankala R.K. Han Y.H. Na J. Lee C.H. Sun Z. Wang S.B. Kimura T. Ok Y.S. Yamauchi Y. Chen A.Z. Wu K.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  75. Wu S.H. Hung Y. Mou C.Y. Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 2011 47 36 9972 9985 10.1039/c1cc11760b 21716992
    [Google Scholar]
  76. Zhang Q. Liu F. Nguyen K.T. Ma X. Wang X. Xing B. Zhao Y. Multifunctional mesoporous silica nanoparticles for cancer‐targeted and controlled drug delivery. Adv. Funct. Mater. 2012 22 24 5144 5156 10.1002/adfm.201201316
    [Google Scholar]
  77. Tsai C.P. Chen C.Y. Hung Y. Chang F.H. Mou C.Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 2009 19 32 5737 5743 10.1039/b905158a
    [Google Scholar]
  78. Almeida P.V. Shahbazi M.A. Mäkilä E. Kaasalainen M. Salonen J. Hirvonen J. Santos H.A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 2014 6 17 10377 10387 10.1039/C4NR02187H 25074521
    [Google Scholar]
  79. Mandal T. Beck M. Kirsten N. Lindén M. Buske C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci. Rep. 2018 8 1 989 10.1038/s41598‑017‑18932‑4 29343865
    [Google Scholar]
  80. Xie X. Li F. Zhang H. Lu Y. Lian S. Lin H. Gao Y. Jia L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur. J. Pharm. Sci. 2016 83 28 35 10.1016/j.ejps.2015.12.014 26690044
    [Google Scholar]
  81. Viswanathan T.M. Chitradevi K. Zochedh A. Vijayabhaskar R. Sukumaran S. Kunjiappan S. Kumar N.S. Sundar K. Babkiewicz E. Maszczyk P. Kathiresan T. Guanidine–curcumin complex-loaded amine-functionalised hollow mesoporous silica nanoparticles for breast cancer therapy. Cancers 2022 14 14 3490 3502 10.3390/cancers14143490 35884549
    [Google Scholar]
  82. Niemelä E. Desai D. Nkizinkiko Y. Eriksson J.E. Rosenholm J.M. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur. J. Pharm. Biopharm. 2015 96 11 21 10.1016/j.ejpb.2015.07.009 26184689
    [Google Scholar]
  83. Bernard M. Jubeli E. Pungente M.D. Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management. Biomater. Sci. 2018 6 8 2025 2053 10.1039/C8BM00518D 29968869
    [Google Scholar]
  84. Encinas-Basurto D. Eedara B.B. Mansour H.M. Biocompatible biodegradable polymeric nanocarriers in dry powder inhalers (DPIs) for pulmonary inhalation delivery. J. Pharm. Investig. 2024 54 2 145 160 10.1007/s40005‑024‑00671‑0
    [Google Scholar]
  85. Haider A. Khan S. Iqbal D.N. Shrahili M. Haider S. Mohammad K. Mohammad A. Rizwan M. Kanwal Q. Mustafa G. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. Eur. Polym. J. 2024 210 112983 10.1016/j.eurpolymj.2024.112983
    [Google Scholar]
  86. Wang J. Wu X. Chen J. Gao T. Zhang Y. Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed. Pharmacother. 2024 173 116330 10.1016/j.biopha.2024.116330 38422656
    [Google Scholar]
  87. Verma D. Sharma S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol. 2021 181 653 671 10.1016/j.ijbiomac.2021.03.087 33766594
    [Google Scholar]
  88. Chen Z. Su M. Xu J. Li J. Wangcao G. Qiu L. A biocompatible glycogen based nanoparticle coating with lipid bilayer for intracellular delivery of survivin siRNA to HeLa cells. J. Drug Deliv. Sci. Technol. 2024 92 105371 10.1016/j.jddst.2024.105371
    [Google Scholar]
  89. Hakim L.K. Yari A. Nikparto N. Mehraban S.H. Cheperli S. Asadi A. Darehdor A.A. Nezaminia S. Dortaj D. Nazari Y. Dehghan M. Hojjat P. Mohajeri M. Hasani Jebelli M.S. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024 24 1 126 134 10.1186/s12903‑024‑03911‑9 38267933
    [Google Scholar]
  90. Meng F. Hasan A. Mahdi Nejadi Babadaei M. Hashemi Kani P. Jouya Talaei A. Sharifi M. Cai T. Falahati M. Cai Y. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J. Adv. Res. 2020 26 137 147 10.1016/j.jare.2020.07.017 33133689
    [Google Scholar]
  91. Maboudi A.H. Lotfipour M.H. Rasouli M. Azhdari M.H. MacLoughlin R. Bekeschus S. Doroudian M. Micelle-based nanoparticles with stimuli-responsive properties for drug delivery. Nanotechnol. Rev. 2024 13 1 20230218 10.1515/ntrev‑2023‑0218
    [Google Scholar]
  92. Yap K.M. Sekar M. Fuloria S. Wu Y.S. Gan S.H. Mat Rani N.N.I. Subramaniyan V. Kokare C. Lum P.T. Begum M.Y. Mani S. Meenakshi D.U. Sathasivam K.V. Fuloria N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  93. Trucillo P. Biomaterials for drug delivery and human applications. Materials 2024 17 2 456 463 10.3390/ma17020456 38255624
    [Google Scholar]
  94. Patel P. Geed S.R. Recent advancements in the application of nanomaterial in modern drug delivery and future perspective. Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities. Springer 2024 319 351 10.1007/978‑3‑031‑45956‑6_13
    [Google Scholar]
  95. Bhirud D. Bhattacharya S. Prajapati B.G. Bioengineered carbohydrate polymers for colon‐specific drug release: Current trends and future prospects. J. Biomed. Mater. Res. A 2024 112 11 1860 1872 10.1002/jbm.a.37732 38721841
    [Google Scholar]
  96. Aseri V. Kumari P. Nagar V. Godara V. Kumar Verma R. Awasthi G. Awasthi K.K. Sankhla M.S. Synthetization and functionalization of natural, polymer, and quantum‐based carbon nanodots and their application in biomedicine. Macromolecular Symposia. Wiley Online Library 2024 2300052
    [Google Scholar]
  97. Veerasamy R. Development of nanoparticles: Recent developments and future prospects. Concepts in Pharmaceutical Biotechnology and Drug Development Springer Singapore 2024 67 89
    [Google Scholar]
  98. Nag S. Mitra O. Tripathi G. Adur I. Mohanto S. Nama M. Samanta S. Gowda B.H.J. Subramaniyan V. Sundararajan V. Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn. Photodyn. Ther. 2024 45 103959 10.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  99. Hatem S. Mohammed D. Ezzat N. Nanotechnology-based strategies overcoming the challenges of retinoblastoma: A comprehensive overview and future perspectives. Fut. J. Pharm. Sci. 2024 10 1 14 22 10.1186/s43094‑024‑00587‑4
    [Google Scholar]
  100. Rehan F. Zhang M. Fang J. Greish K. Therapeutic applications of nanomedicine: Recent developments and future perspectives. Molecules 2024 29 9 2073 2082 10.3390/molecules29092073 38731563
    [Google Scholar]
  101. Askari V.R. Rahimi V.B. Khorrami V.T. Fadaei M.R. Fadaei M.S. Future perspectives, challenges, and opportunities of ionotropic cross-linking of biopolymers in drug delivery. Ionotropic Cross-Linking of Biopolymers Elsevier 2024 659 696 10.1016/B978‑0‑323‑96116‑5.00009‑0
    [Google Scholar]
  102. Rodrigues D.B. Reis R.L. Pirraco R.P. How are natural-based polymers shaping the future of cancer immunotherapy—A review. Polym. Rev. 2024 64 1 371 406 10.1080/15583724.2023.2234462
    [Google Scholar]
  103. Jin X. Heidari G. Hua Z. Lei Y. Huang J. Wu Z. Cláudia Paiva-Santos A. Guo Z. Karimi Male H. Neisiany R.E. Sillanpää M. Prakash C. Wang X. Tan Y. Makvandi P. Xu Y. Nanoengineered polymers and other organic materials in lung cancer treatment: Bridging the gap between research and clinical applications. Eur. Polym. J. 2024 208 112891 10.1016/j.eurpolymj.2024.112891
    [Google Scholar]
  104. Rajeswari A. Christy E.J.S. Jude S. Amalraj A. Pius A. Art and future perspective in the application of nanomaterials in nutraceutical, biological, and medicinal fields. Advanced Nanomaterials for Biological, Nutraceutical, and Medicinal Applications. Apple Academic Press 2024 265 295 10.1201/9781003389163‑11
    [Google Scholar]
  105. Sunoqrot S. Abdel Gaber S.A. Abujaber R. Al-Majawleh M. Talhouni S. Lipid- and polymer-based nanocarrier platforms for cancer vaccine delivery. ACS Appl. Bio Mater. 2024 7 8 4998 5019 10.1021/acsabm.3c00843 38236081
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128365466250214093327
Loading
/content/journals/dmbl/10.2174/0118723128365466250214093327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: surface decoration ; Cancer ; polymers ; targeting ; nanomedicine ; functionalization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test