Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Recently, polymeric systems have emerged as the most practical and adaptable delivery method for targeted cancer therapy. Surface functionalization of polymers is one of the delivery methods of targeted drugs. For instance, to increase the selectivity and affinity of polymers for cancer cells, targeting moieties are covalently bonded on their surface. The surface decoration of polymers with a particular tumor-homing ligand, such as an antibody, an antibody fragment, a peptide, an aptamer, a polysaccharide, a saccharide, folic acid, . may also increase drug retention and accumulation in the tumor vasculature as well as promote efficient internalization by target tumor cells. This study discusses the recent development of polymeric systems coupled with particular targeting ligands for cancer cell targeting. Additionally, attention is given to the various polymers utilized in cancer therapy and how their surface decoration contributes to cancer cell targeting. We conclude that the surface-modified polymeric system in cancer cell targeting has emerged as a promising platform for safe and effective cancer therapy with the potential to maximize therapeutic efficacy while minimizing systemic side effects.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128365466250214093327
2025-03-19
2025-10-22
Loading full text...

Full text loading...

References

  1. ReddyK.T.K. ReddyA.S. Recent breakthroughs in drug delivery systems for targeted cancer therapy: An overview. Cellular, Mol.Biomed. Rep.202551132710.55705/cmbr.2025.456494.1246
    [Google Scholar]
  2. TichanskyD.S. CagirB. BorrazzoE. TophamA. PalazzoJ. WeaverE.J. LangeA. FryR.D. Risk of second cancers in patients with colorectal carcinoids.Dis. Colon Rectum2002451919710.1007/s10350‑004‑6119‑y 11786770
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  4. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.21442 29313949
    [Google Scholar]
  5. RomanoF. Di ScipioF. BaimaG. FrancoF. AimettiM. BertaG.N. Health-related quality of life in juvenile idiopathic arthritis: A systematic review of phase III clinical trials.J. Clin. Med.202514125425910.3390/jcm14010254 39797336
    [Google Scholar]
  6. NaiduM.U.R. RamanaG.V. RaniP.U. MohanK. SumanA. RoyP. Chemotherapy-induced and/or radiation therapy-induced oral mucositis--Complicating the treatment of cancer.Neoplasia20046542343110.1593/neo.04169 15548350
    [Google Scholar]
  7. WongH. BendayanR. RauthA. LiY. WuX. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles.Adv. Drug Deliv. Rev.200759649150410.1016/j.addr.2007.04.008 17532091
    [Google Scholar]
  8. El-SayK.M. El-SawyH.S. Polymeric nanoparticles: Promising platform for drug delivery.Int. J. Pharm.20175281-267569110.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  9. KatiyarS.S. MuntimaduguE. RafeeqiT.A. DombA.J. KhanW. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment.Drug Deliv.20162372608261610.3109/10717544.2015.1039667 26036652
    [Google Scholar]
  10. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  11. KaushikN. BorkarS.B. NandanwarS.K. PandaP.K. ChoiE.H. KaushikN.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.J. Nanobiotechnology202220115210.1186/s12951‑022‑01364‑2 35331246
    [Google Scholar]
  12. Ghaz-JahanianM.A. Abbaspour-AghdamF. AnarjanN. BerenjianA. Jafarizadeh-MalmiriH. Application of chitosan-based nanocarriers in tumor-targeted drug delivery.Mol. Biotechnol.201557320121810.1007/s12033‑014‑9816‑3 25385004
    [Google Scholar]
  13. VeisehO. GunnJ.W. ZhangM. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging.Adv. Drug Deliv. Rev.201062328430410.1016/j.addr.2009.11.002 19909778
    [Google Scholar]
  14. WolframJ. FerrariM. Clinical cancer nanomedicine.Nano Today201925859810.1016/j.nantod.2019.02.005 31360214
    [Google Scholar]
  15. Bar-ZeevM. LivneyY.D. AssarafY.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.Drug Resist. Updat.201731153010.1016/j.drup.2017.05.002 28867241
    [Google Scholar]
  16. SoeZ.C. KwonJ.B. ThapaR.K. OuW. NguyenH.T. GautamM. OhK.T. ChoiH.G. KuS.K. YongC.S. KimJ.O. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells.Pharmaceutics2019112636910.3390/pharmaceutics11020063 30717256
    [Google Scholar]
  17. MorarasuS. MorarasuB.C. GhiarasimR. CoroabaA. TironC. IliescuR. DimofteG.M. Targeted cancer therapy via ph-functionalized nanoparticles: A scoping review of methods and outcomes.Gels20228423224110.3390/gels8040232 35448133
    [Google Scholar]
  18. BlankC.U. HaanenJ.B. RibasA. SchumacherT.N. The “cancer immunogram”.Science2016352628665866010.1126/science.aaf2834 27151852
    [Google Scholar]
  19. MrdenovicS. WangY. YinL. ChuG.C.Y. OuY. LewisM.S. HefferM. PosadasE.M. ZhauH.E. ChungL.W.K. EdderkaouiM. PandolS.J. WangR. ZhangY. A cisplatin conjugate with tumor cell specificity exhibits antitumor effects in renal cancer models.BMC Cancer202323149910.1186/s12885‑023‑10878‑3 37268911
    [Google Scholar]
  20. TorchilinV.P. Drug targeting.Eur. J. Pharm. Sci.200011Suppl. 2S81S9110.1016/S0928‑0987(00)00166‑4 11033430
    [Google Scholar]
  21. AriasJ.L. Drug targeting strategies in cancer treatment: An overview.Mini Rev. Med. Chem.201111111710.2174/138955711793564024 21235512
    [Google Scholar]
  22. LuqmaniY.A. Mechanisms of drug resistance in cancer chemotherapy.Med. Princ. Pract.200514Suppl. 1354810.1159/000086183 16103712
    [Google Scholar]
  23. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers 2014631769179210.3390/cancers6031769 25198391
    [Google Scholar]
  24. WelterM. RiegerH. Interstitial fluid flow and drug delivery in vascularized tumors: A computational model.PLoS One201388e7039510.1371/journal.pone.0070395 23940570
    [Google Scholar]
  25. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  26. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  27. SeiduT.A. KutokaP.T. AsanteD.O. FarooqM.A. AlolgaR.N. BoW. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy.Pharmaceutics20221451113112110.3390/pharmaceutics14051113 35631699
    [Google Scholar]
  28. TekadeR.K. MaheshwariR. SoniN. TekadeM. ChouguleM.B. Nanotechnology for the development of nanomedicine. In: Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes.Elsevier201736110.1016/B978‑0‑12‑809717‑5.00001‑4
    [Google Scholar]
  29. MouraL.I.F. MalfantiA. PeresC. MatosA.I. GuegainE. SainzV. ZlohM. VicentM.J. FlorindoH.F. Functionalized branched polymers: Promising immunomodulatory tools for the treatment of cancer and immune disorders.Mater. Horiz.20196101956197310.1039/C9MH00628A
    [Google Scholar]
  30. EskandariM. HosseiniS.H. AdeliM. PourjavadiA. Polymer-functionalized carbon nanotubes in cancer therapy: A review.Iran. Polym. J.201423538740310.1007/s13726‑014‑0228‑9
    [Google Scholar]
  31. BarbasA.S. WhiteR.R. The development and testing of aptamers for cancer.Curr. Opin. Investig. Drugs2009106572578
    [Google Scholar]
  32. ZwickeG.L. Ali MansooriG. JefferyC.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics.Nano Rev.2012311849610.3402/nano.v3i0.18496 23240070
    [Google Scholar]
  33. Jiménez-GómezC.P. CeciliaJ.A. Chitosan: A natural biopolymer with a wide and varied range of applications.Molecules202025173981400110.3390/molecules25173981 32882899
    [Google Scholar]
  34. Sanchez-SalvadorJ.L. BaleaA. MonteM.C. NegroC. BlancoA. Chitosan grafted/cross-linked with biodegradable polymers: A review.Int. J. Biol. Macromol.202117832534310.1016/j.ijbiomac.2021.02.200 33652051
    [Google Scholar]
  35. FuS. XiaJ. WuJ. Functional chitosan nanoparticles in cancer treatment.J. Biomed. Nanotechnol.20161281585160310.1166/jbn.2016.2228 29341581
    [Google Scholar]
  36. MayaS. KumarL.G. SarmentoB. Sanoj RejinoldN. MenonD. NairS.V. JayakumarR. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells.Carbohydr. Polym.201393266166910.1016/j.carbpol.2012.12.032 23499109
    [Google Scholar]
  37. KashkouliK.I. Torkzadeh-MahaniM. MosaddeghE. Synthesis and characterization of aminotetrazole-functionalized magnetic chitosan nanocomposite as a novel nanocarrier for targeted gene delivery.Mater. Sci. Eng. C20188916617410.1016/j.msec.2018.03.032 29752086
    [Google Scholar]
  38. AkinyeluJ. SinghM. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells.Appl. Nanosci.20199171710.1007/s13204‑018‑0896‑4
    [Google Scholar]
  39. LeeS.J. MinH.S. KuS.H. SonS. KwonI.C. KimS.H. KimK. Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy.Nanomedicine 20149111697171310.2217/nnm.14.99 25321170
    [Google Scholar]
  40. QianQ. NiuS. WilliamsG.R. WuJ. ZhangX. ZhuL.M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells.Colloids Surf. A Physicochem. Eng. Asp.201956412213010.1016/j.colsurfa.2018.12.026
    [Google Scholar]
  41. GeethakumariD. Bhaskaran SathyabhamaA. Raji SathyanK. MohandasD. SomasekharanJ.V. Thavarool PuthiyedathuS. Folate functionalized chitosan nanoparticles as targeted delivery systems for improved anticancer efficiency of cytarabine in MCF-7 human breast cancer cell lines.Int. J. Biol. Macromol.202219915016110.1016/j.ijbiomac.2021.12.070 34973988
    [Google Scholar]
  42. FathiM. ZangabadP.S. AghanejadA. BararJ. Erfan-NiyaH. OmidiY. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib.Carbohydr. Polym.201717213014110.1016/j.carbpol.2017.05.007 28606519
    [Google Scholar]
  43. PrabaharanM. Prospective of guar gum and its derivatives as controlled drug delivery systems.Int. J. Biol. Macromol.201149211712410.1016/j.ijbiomac.2011.04.022 21596058
    [Google Scholar]
  44. SharmaB. KumarV. SoniP. Carbamoylethylation of guar gum.Carbohydr. Polym.200458444945310.1016/j.carbpol.2004.08.013
    [Google Scholar]
  45. SharmaM. MalikR. VermaA. DwivediP. BanothG.S. PandeyN. SarkarJ. MishraP.R. DwivediA.K. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer.J. Biomed. Nanotechnol.2013919610610.1166/jbn.2013.1474 23627072
    [Google Scholar]
  46. KhatikR. DwivediP. UpadhyayM. PatelV.K. PaliwalS.K. DwivediA.K. Toxicological evaluation and targeting tumor cells through folic acid modified guar gum nanoparticles of curcumin.J. Biomater. Tissue Eng.20144214314910.1166/jbt.2014.1147
    [Google Scholar]
  47. RamaniJ. AlleM. SharmaG. ReddyK.V.N.S. ParkY. RaoK.S.V.K. KimJ.C. Guar gum-g-poly(N-acryloyl-L-phenyl alanine) based pH responsive smart hydrogels for in-vitro anticancer drug delivery.Soft Mater.202220332934310.1080/1539445X.2022.2041033
    [Google Scholar]
  48. JanaP. GhoshS. SarkarK. Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer.Int. J. Biol. Macromol.20201611149116010.1016/j.ijbiomac.2020.06.090 32553957
    [Google Scholar]
  49. PraphakarR.A. JeyarajM. MehnathS. HiguchiA. PonnammaD. SadasivuniK.K. RajanM. A pH-sensitive guar gum- grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells.J. Mater. Chem. B Mater. Biol. Med.20186101519153010.1039/C7TB02551C 32254216
    [Google Scholar]
  50. KarimA.A. BhatR. Gelatin alternatives for the food industry: Recent developments, challenges and prospects.Trends Food Sci. Technol.2008191264465610.1016/j.tifs.2008.08.001
    [Google Scholar]
  51. AlipalJ. Mohd Pu’adN.A.S. LeeT.C. NayanN.H.M. SahariN. BasriH. IdrisM.I. AbdullahH.Z. A review of gelatin: Properties, sources, process, applications, and commercialisation.Mater. Today Proc.20214224025010.1016/j.matpr.2020.12.922
    [Google Scholar]
  52. Van VlierbergheS. VanderleydenE. BoterbergV. DubruelP. Gelatin functionalization of biomaterial surfaces: Strategies for immobilization and visualization.Polymers 20113111413010.3390/polym3010114
    [Google Scholar]
  53. BelloA.B. KimD. KimD. ParkH. LeeS.H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications.Tissue Eng. Part B Rev.202026216418010.1089/ten.teb.2019.0256 31910095
    [Google Scholar]
  54. JainA. GulbakeA. JainA. ShilpiS. HurkatP. JainA. JainS.K. Development of surface-functionalised nanoparticles for FGF2 receptor-based solid tumour targeting.J. Microencapsul.20122919510210.3109/02652048.2011.635219 22126313
    [Google Scholar]
  55. BensonJ.R. JatoiI. The global breast cancer burden.Future Oncol.20128669770210.2217/fon.12.61 22764767
    [Google Scholar]
  56. TiwariaJ. GargbA. JainaA. fabrication of gelatin functionalized carbon nanotubes system for the site-specific delivery of curcumin towards breast cancer cell.Plant Arch.20202043164325
    [Google Scholar]
  57. WangX. NiuD. HuC. LiP. Polyethyleneimine-based nanocarriers for gene delivery.Curr. Pharm. Des.201521426140615610.2174/1381612821666151027152907 26503146
    [Google Scholar]
  58. NguyenH-K. LemieuxP. VinogradovS.V. GebhartC.L. GuérinN. ParadisG. BronichT.K. AlakhovV.Y. KabanovA.V. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents.Gene Ther.20007212613810.1038/sj.gt.3301052 10673718
    [Google Scholar]
  59. TeoP.Y. YangC. WhildingL.M. Parente-PereiraA.C. MaherJ. GeorgeA.J.T. HedrickJ.L. YangY.Y. Ghaem-MaghamiS. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: Strategies to enhance T cell killing.Adv. Healthc. Mater.2015481180118910.1002/adhm.201500089 25866054
    [Google Scholar]
  60. MohammadiM. SalmasiZ. HashemiM. MosaffaF. AbnousK. RamezaniM. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells.Int. J. Pharm.20154851-2506010.1016/j.ijpharm.2015.02.031 25712164
    [Google Scholar]
  61. TianZ. ShiY. YinM. ShenH. JiaN. Functionalized multiwalled carbon nanotubes-anticancer drug carriers: Synthesis, targeting ability and antitumor activity.Nano Biomed. Eng.201133111710.5101/nbe.v3i3.p157‑162
    [Google Scholar]
  62. ZhaoL. LiY. ZhuJ. SunN. SongN. XingY. HuangH. ZhaoJ. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy.J. Nanobiotechnol.20191713010.1186/s12951‑019‑0462‑6 30782154
    [Google Scholar]
  63. ChenD.R. BeiJ.Z. WangS.G. Polycaprolactone microparticles and their biodegradation.Polym. Degrad. Stabil.200067345545910.1016/S0141‑3910(99)00145‑7
    [Google Scholar]
  64. JainD. YadavA.K. Development of hyaluronic acid–anchored polycaprolactone nanoparticles for efficient delivery of PLK1 siRNA to breast cancer.Drug Deliv. Transl. Res.20231361730174410.1007/s13346‑022‑01288‑2 36641487
    [Google Scholar]
  65. ZhaiY. ZhouX. ZhangZ. ZhangL. WangD. WangX. SunW. Design, synthesis, and characterization of Schiff base bond-linked pH-responsive doxorubicin prodrug based on functionalized mPEG-PCL for targeted cancer therapy.Polymers 201810101127113210.3390/polym10101127 30961052
    [Google Scholar]
  66. MahdavianiP. BahadorikhaliliS. Navaei-NigjehM. VafaeiS.Y. Esfandyari-ManeshM. AbdolghaffariA.H. DamanZ. AtyabiF. GhahremaniM.H. AminiM. LavasanifarA. DinarvandR. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells.Mater. Sci. Eng. C20178030131210.1016/j.msec.2017.05.126 28866169
    [Google Scholar]
  67. ZamaniM. AghajanzadehM. SharafiA. RostamizadehK. DanafarH. Targeted drug delivery via folate decorated nanocarriers based on linear polymer for treatment of breast cancer.Pharm. Dev. Technol.2022271192410.1080/10837450.2021.2018457 34895033
    [Google Scholar]
  68. LaleS.V. R G, A.; Aravind, A.; Kumar, D.S.; Koul, V. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy.Biomacromolecules20141551737175210.1021/bm5001263 24689987
    [Google Scholar]
  69. KumarP.V. ShengT.M. A new approach for β-cyclodextrin conjugated drug delivery system in cancer therapy.Curr. Drug Deliv.202219326630010.2174/1567201818666211006103452 34620064
    [Google Scholar]
  70. DasM. SolankiA. JoshiA. DevkarR. SeshadriS. ThakoreS. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery.Carbohydr. Polym.201920669470510.1016/j.carbpol.2018.11.049 30553374
    [Google Scholar]
  71. ImperioD. GrollaA.A. MoroM. BortolottoV. Del GrossoE. GenazzaniA.A. PanzaL. Functionalization of β-cyclodextrin with a urea-based PSMA ligand and preliminary studies on targeting prostate cancer cells.Bioorg. Med. Chem. Lett.20227312889010.1016/j.bmcl.2022.128890 35839965
    [Google Scholar]
  72. ZhuP. ChenL. ZhaoY. GaoC. YangJ. LiaoX. LiuD. YangB. A novel host-guest complex based on biotin functionalized polyamine-β-cyclodextrin for tumor targeted delivery of luteolin.J. Mol. Struct.2021123713033910.1016/j.molstruc.2021.130339
    [Google Scholar]
  73. NayakJ. PrajapatiK.S. KumarS. VashisthaV.K. SahooS.K. KumarR. Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy.Mater. Today Commun.20223310464410.1016/j.mtcomm.2022.104644
    [Google Scholar]
  74. KankalaR.K. HanY.H. NaJ. LeeC.H. SunZ. WangS.B. KimuraT. OkY.S. YamauchiY. ChenA.Z. WuK.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles.Adv. Mater.20203223190703510.1002/adma.201907035 32319133
    [Google Scholar]
  75. WuS.H. HungY. MouC.Y. Mesoporous silica nanoparticles as nanocarriers.Chem. Commun. 201147369972998510.1039/c1cc11760b 21716992
    [Google Scholar]
  76. ZhangQ. LiuF. NguyenK.T. MaX. WangX. XingB. ZhaoY. Multifunctional mesoporous silica nanoparticles for cancer‐targeted and controlled drug delivery.Adv. Funct. Mater.201222245144515610.1002/adfm.201201316
    [Google Scholar]
  77. TsaiC.P. ChenC.Y. HungY. ChangF.H. MouC.Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells.J. Mater. Chem.200919325737574310.1039/b905158a
    [Google Scholar]
  78. AlmeidaP.V. ShahbaziM.A. MäkiläE. KaasalainenM. SalonenJ. HirvonenJ. SantosH.A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.Nanoscale2014617103771038710.1039/C4NR02187H 25074521
    [Google Scholar]
  79. MandalT. BeckM. KirstenN. LindénM. BuskeC. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles.Sci. Rep.20188198910.1038/s41598‑017‑18932‑4 29343865
    [Google Scholar]
  80. XieX. LiF. ZhangH. LuY. LianS. LinH. GaoY. JiaL. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery.Eur. J. Pharm. Sci.201683283510.1016/j.ejps.2015.12.014 26690044
    [Google Scholar]
  81. ViswanathanT.M. ChitradeviK. ZochedhA. VijayabhaskarR. SukumaranS. KunjiappanS. KumarN.S. SundarK. BabkiewiczE. MaszczykP. KathiresanT. Guanidine–curcumin complex-loaded amine-functionalised hollow mesoporous silica nanoparticles for breast cancer therapy.Cancers 202214143490350210.3390/cancers14143490 35884549
    [Google Scholar]
  82. NiemeläE. DesaiD. NkizinkikoY. ErikssonJ.E. RosenholmJ.M. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells.Eur. J. Pharm. Biopharm.201596112110.1016/j.ejpb.2015.07.009 26184689
    [Google Scholar]
  83. BernardM. JubeliE. PungenteM.D. YagoubiN. Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management.Biomater. Sci.2018682025205310.1039/C8BM00518D 29968869
    [Google Scholar]
  84. Encinas-BasurtoD. EedaraB.B. MansourH.M. Biocompatible biodegradable polymeric nanocarriers in dry powder inhalers (DPIs) for pulmonary inhalation delivery.J. Pharm. Investig.202454214516010.1007/s40005‑024‑00671‑0
    [Google Scholar]
  85. HaiderA. KhanS. IqbalD.N. ShrahiliM. HaiderS. MohammadK. MohammadA. RizwanM. KanwalQ. MustafaG. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications.Eur. Polym. J.202421011298310.1016/j.eurpolymj.2024.112983
    [Google Scholar]
  86. WangJ. WuX. ChenJ. GaoT. ZhangY. YuN. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives.Biomed. Pharmacother.202417311633010.1016/j.biopha.2024.116330 38422656
    [Google Scholar]
  87. VermaD. SharmaS.K. Recent advances in guar gum based drug delivery systems and their administrative routes.Int. J. Biol. Macromol.202118165367110.1016/j.ijbiomac.2021.03.087 33766594
    [Google Scholar]
  88. ChenZ. SuM. XuJ. LiJ. WangcaoG. QiuL. A biocompatible glycogen based nanoparticle coating with lipid bilayer for intracellular delivery of survivin siRNA to HeLa cells.J. Drug Deliv. Sci. Technol.20249210537110.1016/j.jddst.2024.105371
    [Google Scholar]
  89. HakimL.K. YariA. NikpartoN. MehrabanS.H. CheperliS. AsadiA. DarehdorA.A. NezaminiaS. DortajD. NazariY. DehghanM. HojjatP. MohajeriM. Hasani JebelliM.S. The current applications of nano and biomaterials in drug delivery of dental implant.BMC Oral Health202424112613410.1186/s12903‑024‑03911‑9 38267933
    [Google Scholar]
  90. MengF. HasanA. Mahdi Nejadi BabadaeiM. Hashemi KaniP. Jouya TalaeiA. SharifiM. CaiT. FalahatiM. CaiY. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems.J. Adv. Res.20202613714710.1016/j.jare.2020.07.017 33133689
    [Google Scholar]
  91. MaboudiA.H. LotfipourM.H. RasouliM. AzhdariM.H. MacLoughlinR. BekeschusS. DoroudianM. Micelle-based nanoparticles with stimuli-responsive properties for drug delivery.Nanotechnol. Rev.20241312023021810.1515/ntrev‑2023‑0218
    [Google Scholar]
  92. YapK.M. SekarM. FuloriaS. WuY.S. GanS.H. Mat RaniN.N.I. SubramaniyanV. KokareC. LumP.T. BegumM.Y. ManiS. MeenakshiD.U. SathasivamK.V. FuloriaN.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature.Int. J. Nanomed.2021167891794110.2147/IJN.S328135 34880614
    [Google Scholar]
  93. TrucilloP. Biomaterials for drug delivery and human applications.Materials 202417245646310.3390/ma17020456 38255624
    [Google Scholar]
  94. PatelP. GeedS.R. Recent advancements in the application of nanomaterial in modern drug delivery and future perspective.In: Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities.Springer202431935110.1007/978‑3‑031‑45956‑6_13
    [Google Scholar]
  95. BhirudD. BhattacharyaS. PrajapatiB.G. Bioengineered carbohydrate polymers for colon‐specific drug release: Current trends and future prospects.J. Biomed. Mater. Res. A2024112111860187210.1002/jbm.a.37732 38721841
    [Google Scholar]
  96. AseriV. KumariP. NagarV. GodaraV. Kumar VermaR. AwasthiG. AwasthiK.K. SankhlaM.S. Synthetization and functionalization of natural, polymer, and quantum‐based carbon nanodots and their application in biomedicine.In: Macromolecular Symposia.Wiley Online Library20242300052
    [Google Scholar]
  97. VeerasamyR. Development of nanoparticles: Recent developments and future prospects.In: Concepts in Pharmaceutical Biotechnology and Drug Development.SingaporeSpringer20246789
    [Google Scholar]
  98. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  99. HatemS. MohammedD. EzzatN. Nanotechnology-based strategies overcoming the challenges of retinoblastoma: A comprehensive overview and future perspectives.Fut. J. Pharm. Sci.2024101142210.1186/s43094‑024‑00587‑4
    [Google Scholar]
  100. RehanF. ZhangM. FangJ. GreishK. Therapeutic applications of nanomedicine: Recent developments and future perspectives.Molecules20242992073208210.3390/molecules29092073 38731563
    [Google Scholar]
  101. AskariV.R. RahimiV.B. KhorramiV.T. FadaeiM.R. FadaeiM.S. Future perspectives, challenges, and opportunities of ionotropic cross-linking of biopolymers in drug delivery.In: Ionotropic Cross-Linking of Biopolymers.Elsevier202465969610.1016/B978‑0‑323‑96116‑5.00009‑0
    [Google Scholar]
  102. RodriguesD.B. ReisR.L. PirracoR.P. How are natural-based polymers shaping the future of cancer immunotherapy—A review.Polym. Rev. 202464137140610.1080/15583724.2023.2234462
    [Google Scholar]
  103. JinX. HeidariG. HuaZ. LeiY. HuangJ. WuZ. Cláudia Paiva-SantosA. GuoZ. KarimiM. H.; Neisiany, R.E.; Sillanpää, M.; Prakash, C.; Wang, X.; Tan, Y.; Makvandi, P.; Xu, Y. Nanoengineered polymers and other organic materials in lung cancer treatment: Bridging the gap between research and clinical applications.Eur. Polym. J.202420811289110.1016/j.eurpolymj.2024.112891
    [Google Scholar]
  104. RajeswariA. ChristyE.J.S. JudeS. AmalrajA. PiusA. Art and future perspective in the application of nanomaterials in nutraceutical, biological, and medicinal fields.In: Advanced Nanomaterials for Biological, Nutraceutical, and Medicinal Applications.Apple Academic Press202426529510.1201/9781003389163‑11
    [Google Scholar]
  105. SunoqrotS. Abdel GaberS.A. AbujaberR. Al-MajawlehM. TalhouniS. Lipid- and polymer-based nanocarrier platforms for cancer vaccine delivery.ACS Appl. Bio Mater.2024784998501910.1021/acsabm.3c0084338236081
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128365466250214093327
Loading
/content/journals/dmbl/10.2174/0118723128365466250214093327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; functionalization; nanomedicine; polymers; surface decoration; targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test