Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Deoxyribonucleic acid (DNA) is the crucial molecule that stores and transmits genetic information in living organisms. DNA can incur damage from various sources, necessitating efficient DNA repair mechanisms to maintain genomic stability. Cells employ multiple repair pathways, including single-strand repair and double-strand break repair, each involving specific proteins and enzymes. PARPs play a fundamental role in the repair of DNA to detect damage to DNA and facilitate the repair process. PARPi are drugs that inhibit PARP activity, leading to DNA damage accumulation and cell death, particularly in cancer cells with impairments in DNA repair pathways, such as BRCA1/2 mutations. Additionally, PARPi is promising in treating cancer, offering a targeted therapeutic approach. Resistance to PARP inhibitors continues to be an issue in a major clinical challenge. Mechanisms of resistance include homologous recombination repair restoration, increased drug efflux, and mutations in the PARP1 enzyme. Moreover, to overcome this resistance, researchers are investigating combination therapies, targeted therapies that inhibit complementary DNA repair pathways, and novel agents that can counteract resistance mechanisms. Future perspectives focus on enhancing our understanding of resistance mechanisms, developing more effective and selective PARP inhibitors, and identifying predictive biomarkers for therapy response. These advancements aim to improve the efficacy and durability of PARP inhibitor-based treatments, ultimately leading to better outcomes for cancer patients. This review article focuses on the reasons for the evolution of PARP inhibitors, the mechanisms behind resistance, and new strategies to overcome this resistance.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128343916250212094926
2025-03-13
2025-10-22
Loading full text...

Full text loading...

References

  1. TraversA. MuskhelishviliG. DNA structure and function.FEBS J.2015282122279229510.1111/febs.1330725903461
    [Google Scholar]
  2. WatsonJD CrickF.H The structure of DNA.Cold. Spring. Harb. Symp. Quant. Biol.19531812313110.1101/SQB.1953.018.01.020
    [Google Scholar]
  3. KornbergA. DNA replication.Trends Biochem. Sci.19849412212410.1016/0968‑0004(84)90114‑2
    [Google Scholar]
  4. AlbertsB. JohnsonA. LewisJ. Raff, M.; Roberts, K.; Walter, P. The structure and function of DNA. In: Molecular Biology of the Cell, 4th Ed; Garland Science: New York2002
    [Google Scholar]
  5. McKayM.J. CraigJ. KalitsisP. KozlovS. VerschoorS. ChenP. LobachevskyP. VasireddyR. YanY. RyanJ. McGillivrayG. SavarirayanR. LavinM.F. RamsayR.G. XuH. A roberts syndrome individual with differential genotoxin sensitivity and a DNA damage response defect.Int. J. Radiat. Oncol. Biol. Phys.201910351194120210.1016/j.ijrobp.2018.11.04730508616
    [Google Scholar]
  6. YousefzadehM. HenpitaC. VyasR. Soto-PalmaC. RobbinsP. NiedernhoferL. DNA damage—how and why we age?eLife202110e6285210.7554/eLife.6285233512317
    [Google Scholar]
  7. NorburyC.J. HicksonI.D. Cellular responses to DNA damage.Annu. Rev. Pharmacol. Toxicol.200141136740110.1146/annurev.pharmtox.41.1.36711264462
    [Google Scholar]
  8. BouwmanP. JonkersJ. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance.Nat. Rev. Cancer201212958759810.1038/nrc334222918414
    [Google Scholar]
  9. GhosalG. ChenJ. DNA damage tolerance: A double-edged sword guarding the genome.Transl. Cancer Res.20132310712924058901
    [Google Scholar]
  10. DexheimerTS DNA repair pathways and mechanisms.DNA Rep. Cancer Stem. Cells.2013193210.1007/978‑94‑007‑4590‑2_2
    [Google Scholar]
  11. HelledayT. PetermannE. LundinC. HodgsonB. SharmaR.A. DNA repair pathways as targets for cancer therapy.Nat. Rev. Cancer20088319320410.1038/nrc234218256616
    [Google Scholar]
  12. BurgessJ.T. RoseM. BoucherD. PlowmanJ. MolloyC. FisherM. O’LearyC. RichardD.J. O’ByrneK.J. BoldersonE. The therapeutic potential of DNA damage repair pathways and genomic stability in lung cancer.Front. Oncol.202010125610.3389/fonc.2020.0125632850380
    [Google Scholar]
  13. AlmeidaK.H. SobolR.W. A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification.DNA Repair20076669571110.1016/j.dnarep.2007.01.00917337257
    [Google Scholar]
  14. AkbariM. Peña-DiazJ. AndersenS. LiabakkN.B. OtterleiM. KrokanH.E. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity.DNA Repair20098783484310.1016/j.dnarep.2009.04.00219442590
    [Google Scholar]
  15. GohilD. SarkerA.H. RoyR. Base excision repair: Mechanisms and impact in biology, disease, and medicine.Int. J. Mol. Sci.202324181418610.3390/ijms24181418637762489
    [Google Scholar]
  16. KumarN. MorenoN.C. FeltesB.C. MenckC.F.M. HoutenB.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins.Genet. Mol. Biol.2020431 suppl 1e2019010410.1590/1678‑4685‑gmb‑2019‑010432141475
    [Google Scholar]
  17. YokoyamaH. MizutaniR. Structural biology of DNA (6-4) photoproducts formed by ultraviolet radiation and interactions with their binding proteins.Int. J. Mol. Sci.20141511203212033810.3390/ijms15112032125383676
    [Google Scholar]
  18. MuH. GeacintovN.E. BroydeS. YeoJ.E. SchärerO.D. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair.DNA Repair201871334210.1016/j.dnarep.2018.08.00530174301
    [Google Scholar]
  19. KusakabeM. OnishiY. TadaH. KuriharaF. KusaoK. FurukawaM. IwaiS. YokoiM. SakaiW. SugasawaK. Mechanism and regulation of DNA damage recognition in nucleotide excision repair.Genes Environ.2019411210.1186/s41021‑019‑0119‑630700997
    [Google Scholar]
  20. SerticS. MollicaA. CampusI. RomaS. TuminiE. AguileraA. Muzi-FalconiM. Coordinated activity of y family TLS Polymerases and EXO1 protects Non-S Phase Cells from UV-induced cytotoxic lesions.Mol. Cell20187013447.e410.1016/j.molcel.2018.02.01729551515
    [Google Scholar]
  21. CannanW.J.. RashidI. TomkinsonA.E. WallaceS.S. Pederson, D.S. The human ligase IIIα-XRCC1 protein complex performs DNA nick repair after transient unwrapping of nucleosomal DNA. J. Biol. Chem.2017292135227523810.1074/jbc.M116.73672828184006
    [Google Scholar]
  22. HanawaltP.C. SpivakG. Transcription-coupled DNA repair: Two decades of progress and surprises.Nat. Rev. Mol. Cell Biol.200891295897010.1038/nrm254919023283
    [Google Scholar]
  23. KunkelT.A. Evolving views of DNA replication (in)fidelity.Cold Spring Harb. Symp. Quant. Biol.20097409110110.1101/sqb.2009.74.02719903750
    [Google Scholar]
  24. SchmidtM.H.M. PearsonC.E. Disease-associated repeat instability and mismatch repair.DNA Repair20163811712610.1016/j.dnarep.2015.11.00826774442
    [Google Scholar]
  25. JohannesenK.M. KarstensenJ.G. RasmussenA.Ø. ScottE.A.H. BirkedalU. HansenT.O. SteenholdtC. JelsigA.M. A novel case of biallelic mlh3 variants in a patient with rectal cancer and polyps.Clin. Genet.2025 cge.1468910.1111/cge.1468939789695
    [Google Scholar]
  26. CulliganK.M. Meyer-GauenG. Lyons-WeilerJ. HaysJ.B. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins.Nucleic Acids Res.200028246347110.1093/nar/28.2.46310606644
    [Google Scholar]
  27. Amaral-SilvaG.K. MartinsM.D. PontesH.A.R. FregnaniE.R. LopesM.A. FonsecaF.P. VargasP.A. Mismatch repair system proteins in oral benign and malignant lesions.J. Oral Pathol. Med.201746424124510.1111/jop.1248427509575
    [Google Scholar]
  28. ReyesG.X. SchmidtT.T. KolodnerR.D. HombauerH. New insights into the mechanism of DNA mismatch repair.Chromosoma2015124444346210.1007/s00412‑015‑0514‑025862369
    [Google Scholar]
  29. BrownM.W. KimY. WilliamsG.M. HuckJ.D. SurteesJ.A. FinkelsteinI.J. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions.Nat. Commun.2016711060710.1038/ncomms1060726837705
    [Google Scholar]
  30. JiricnyJ. Postreplicative mismatch repair.Cold Spring Harb. Perspect. Biol.201354a01263310.1101/cshperspect.a01263323545421
    [Google Scholar]
  31. KawakamiT. ShiinaH. IgawaM. DeguchiM. NakajimaK. OgishimaT. TokizaneT. UrakamiS. EnokidaH. MiuraK. IshiiN. KaneC.J. CarrollP.R. DahiyaR. Inactivation of the hMSH3 mismatch repair gene in bladder cancer.Biochem. Biophys. Res. Commun.2004325393494210.1016/j.bbrc.2004.10.11415541380
    [Google Scholar]
  32. YamamotoH. ImaiK. Microsatellite instability: An update.Arch. Toxicol.201589689992110.1007/s00204‑015‑1474‑025701956
    [Google Scholar]
  33. ClarkN. WuX. HerC. MutS homologues hMSH4 and hMSH5: Genetic variations, functions, and implications in human diseases.Curr. Genomics2013142819010.2174/138920291131402000224082819
    [Google Scholar]
  34. FarragM.S. AbdelwahabH.W. AbdellateefA. AnberN. EllayehM.A. HusseinD.T. EldesokyA.R. ShetaH. DNA mismatch repair (MMR) genes expression in lung cancer and its correlation with different clinicopathologic parameters.Sci. Rep.202515188510.1038/s41598‑024‑83067‑239762286
    [Google Scholar]
  35. EdelbrockM.A. KaliyaperumalS. WilliamsK.J. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities.Mutat. Res.2013743-744536610.1016/j.mrfmmm.2012.12.00823391514
    [Google Scholar]
  36. LiuD. KeijzersG. RasmussenL.J. DNA mismatch repair and its many roles in eukaryotic cells.Mutat. Res. Rev. Mutat. Res.201777317418710.1016/j.mrrev.2017.07.00128927527
    [Google Scholar]
  37. KadyrovF.A. DzantievL. ConstantinN. ModrichP. Endonucleolytic function of MutLalpha in human mismatch repair.Cell2006126229730810.1016/j.cell.2006.05.03916873062
    [Google Scholar]
  38. CannavoE. GerritsB. MarraG. SchlapbachR. JiricnyJ. Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2.J. Biol. Chem.200728252976298610.1074/jbc.M60998920017148452
    [Google Scholar]
  39. FishelR. Mismatch Repair.J. Biol. Chem.201529044263952640310.1074/jbc.R115.66014226354434
    [Google Scholar]
  40. PrindleM.J. LoebL.A. DNA polymerase delta in DNA replication and genome maintenance.Environ. Mol. Mutagen.201253966668210.1002/em.2174523065663
    [Google Scholar]
  41. HalabiA. FuselierK.T.B. GrabczykE. GAA•TTC repeat expansion in human cells is mediated by mismatch repair complex MutLγ and depends upon the endonuclease domain in MLH3 isoform one.Nucleic Acids Res.20184684022403210.1093/nar/gky14329529236
    [Google Scholar]
  42. LipkinS.M. WangV. JacobyR. Banerjee-BasuS. BaxevanisA.D. LynchH.T. ElliottR.M. CollinsF.S. MLH3: A DNA mismatch repair gene associated with mammalian microsatellite instability.Nat. Genet.2000241273510.1038/7164310615123
    [Google Scholar]
  43. CannavoE. MarraG. Sabates-BellverJ. MenigattiM. LipkinS.M. FischerF. CejkaP. JiricnyJ. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair.Cancer Res.20056523107591076610.1158/0008‑5472.CAN‑05‑252816322221
    [Google Scholar]
  44. JeonY. KimD. Martín-LópezJ.V. LeeR. OhJ. HanneJ. FishelR. LeeJ.B. Dynamic control of strand excision during human DNA mismatch repair.Proc. Natl. Acad. Sci. USA2016113123281328610.1073/pnas.152374811326951673
    [Google Scholar]
  45. KowalczykowskiS.C. HunterN. HeyerW.D. DNA Recombination.Cold Spring Harbor, NYCold Spring Harbor Laboratory Press2016
    [Google Scholar]
  46. PrakashR. ZhangY. FengW. JasinM. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins.Cold Spring Harb. Perspect. Biol.201574a01660010.1101/cshperspect.a01660025833843
    [Google Scholar]
  47. KowalczykowskiS.C. Snapshots of DNA repair.Nature2008453719446346510.1038/453463a18497811
    [Google Scholar]
  48. VeauteX. JeussetJ. SoustelleC. KowalczykowskiS. C. CamL.E. FabreF. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments.Nature2003423693730931210.1038/nature01585
    [Google Scholar]
  49. PiazzaA. WrightW.D. HeyerW.D. Multi-invasions are recombination by-products that induce chromosomal rearrangements.Cell20171704760773.e1510.1016/j.cell.2017.06.05228781165
    [Google Scholar]
  50. LiX. StithC.M. BurgersP.M. HeyerW.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase δ.Mol. Cell200936470471310.1016/j.molcel.2009.09.03619941829
    [Google Scholar]
  51. FalckJ. CoatesJ. JacksonS.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage.Nature2005434703360561110.1038/nature0344215758953
    [Google Scholar]
  52. OchiT. BlackfordA.N. CoatesJ. JhujhS. MehmoodS. TamuraN. TraversJ. WuQ. DraviamV.M. RobinsonC.V. BlundellT.L. JacksonS.P. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair.Science2015347621818518810.1126/science.126197125574025
    [Google Scholar]
  53. ChaudhuriJ. AltF.W. Class-switch recombination: Interplay of transcription, DNA deamination and DNA repair.Nat. Rev. Immunol.20044754155210.1038/nri139515229473
    [Google Scholar]
  54. SoutoglouE. DornJ.F. SenguptaK. JasinM. NussenzweigA. RiedT. DanuserG. MisteliT. Positional stability of single double-strand breaks in mammalian cells.Nat. Cell Biol.20079667568210.1038/ncb159117486118
    [Google Scholar]
  55. IoannesD.P. MaluS. CortesP. AggarwalA.K. Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining.Cell Rep.2012261505151210.1016/j.celrep.2012.11.00423219551
    [Google Scholar]
  56. GibsonB.A. KrausW.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs.Nat. Rev. Mol. Cell Biol.201213741142410.1038/nrm337622713970
    [Google Scholar]
  57. BarkauskaiteE. JankeviciusG. LadurnerA.G. AhelI. TiminszkyG. The recognition and removal of cellular poly( ADP ‐ribose) signals.FEBS J.2013280153491350710.1111/febs.1235823711178
    [Google Scholar]
  58. DenuJ.M. The Sir2 family of protein deacetylases.Curr. Opin. Chem. Biol.20059543144010.1016/j.cbpa.2005.08.01016122969
    [Google Scholar]
  59. AméJ.C. RolliV. SchreiberV. NiedergangC. ApiouF. DeckerP. MullerS. HögerT. MurciaJ.M. Murciad.G. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase.J. Biol. Chem.199927425178601786810.1074/jbc.274.25.1786010364231
    [Google Scholar]
  60. AméJ.C. SpenlehauerC. Murciad.G. The PARP superfamily.BioEssays200426888289310.1002/bies.2008515273990
    [Google Scholar]
  61. LangelierM.F. ServentK.M. RogersE.E. PascalJ.M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation.J. Biol. Chem.200828374105411410.1074/jbc.M70855820018055453
    [Google Scholar]
  62. TaoZ. GaoP. HoffmanD.W. LiuH. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif.Biochemistry200847215804581310.1021/bi800018a18452307
    [Google Scholar]
  63. CuneoM.J. LondonR.E. Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase β binding affinity.Proc. Natl. Acad. Sci. USA2010107156805681010.1073/pnas.091407710720351257
    [Google Scholar]
  64. AliA.A.E. JukesR.M. PearlL.H. OliverA.W. Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK.Nucleic Acids Res.20093751701171210.1093/nar/gkn108619155274
    [Google Scholar]
  65. DateH. IgarashiS. SanoY. TakahashiT. TakahashiT. TakanoH. TsujiS. NishizawaM. OnoderaO. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1.Biochem. Biophys. Res. Commun.200432541279128510.1016/j.bbrc.2004.10.16215555565
    [Google Scholar]
  66. LévyN. OehlmannM. DelalandeF. NasheuerH.P. DorsselaerV.A. SchreiberV. Murciad.G. MurciaM.d.J. MaioranoD. BressonA. XRCC1 interacts with the p58 subunit of DNA Pol α-primase and may coordinate DNA repair and replication during S phase.Nucleic Acids Res.200937103177318810.1093/nar/gkp14419305001
    [Google Scholar]
  67. Mendoza-AlvarezH. Alvarez-GonzalezR. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular.J. Biol. Chem.199326830225752258010.1016/S0021‑9258(18)41568‑28226768
    [Google Scholar]
  68. BelenchónR.I. RuizC.C.B. SaezC. GarcíaO.I. LópezM.R.A. Parp inhibitors and radiotherapy: A new combination for prostate cancer (systematic review).Int. J. Mol. Sci.202324161297810.3390/ijms24161297837629155
    [Google Scholar]
  69. DantzerF. Rubial.d.G. Ménissier-de MurciaJ. HostomskyZ. Murciad.G. SchreiberV. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1.Biochemistry200039257559756910.1021/bi000344210858306
    [Google Scholar]
  70. DantzerF. SchreiberV. NiedergangC. TruccoC. FlatterE. RubiaG.D.L. OliverJ. RolliV. Ménissier-de MurciaJ. Murciad.G. Involvement of poly(ADP-ribose) polymerase in base excision repair.Biochimie1999811-2697510.1016/S0300‑9084(99)80040‑610214912
    [Google Scholar]
  71. HanzlikovaH. GittensW. KrejcikovaK. ZengZ. CaldecottK.W. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin.Nucleic Acids Res.20174552546255727965414
    [Google Scholar]
  72. FisherA.E.O. HocheggerH. TakedaS. CaldecottK.W. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase.Mol. Cell. Biol.200727155597560510.1128/MCB.02248‑0617548475
    [Google Scholar]
  73. BiF.F. LiD. YangQ. Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer.BioMed Res. Int.201320131510.1155/2013/94626823762867
    [Google Scholar]
  74. LiD. BiF.F. CaoJ.M. CaoC. LiC.Y. LiuB. YangQ. Poly (ADP-ribose) polymerase 1 transcriptional regulation: A novel crosstalk between histone modification H3K9ac and ETS1 motif hypomethylation in BRCA1-mutated ovarian cancer.Oncotarget20145129129710.18632/oncotarget.154924448423
    [Google Scholar]
  75. BiF.F. LiD. YangQ. Promoter hypomethylation, especially around the E26 transformation-specific motif, and increased expression of poly (ADP-ribose) polymerase 1 in BRCA-mutated serous ovarian cancer.BMC Cancer20131319010.1186/1471‑2407‑13‑9023442605
    [Google Scholar]
  76. NewmanE.A. LuF. BashllariD. WangL. OpipariA.W. CastleV.P. Alternative NHEJ pathway components are therapeutic targets in high-risk neuroblastoma.Mol. Cancer Res.201513347048210.1158/1541‑7786.MCR‑14‑033725563294
    [Google Scholar]
  77. LiuQ. MaL. JonesT. PalomeroL. PujanaM.A. Martinez-RuizH. Subjugation of TGFβ signalling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining.Clin. Cancer Res.201824236001601410.1158/1078‑0432.CCR‑18‑134630087144
    [Google Scholar]
  78. MegoM. CiernaZ. SvetlovskaD. MacakD. MachalekovaK. MiskovskaV. ChovanecM. UsakovaV. ObertovaJ. BabalP. MardiakJ. PARP expression in germ cell tumours.J. Clin. Pathol.201366760761210.1136/jclinpath‑2012‑20108823486608
    [Google Scholar]
  79. NewmanR. SoldatenkovV. DritschiloA. NotarioV. Poly(ADP-ribose) polymerase turnover alterations do not contribute to PARP overexpression in Ewing’s sarcoma cells.Oncol. Rep.20029352953210.3892/or.9.3.52911956622
    [Google Scholar]
  80. TomodaT. KurashigeT. MorikiT. YamamotoH. FujimotoS. TaniguchiT. Enhanced expression of poly(ADP‐ribose) synthetase gene in malignant lymphoma.Am. J. Hematol.199137422322710.1002/ajh.28303704021907096
    [Google Scholar]
  81. RojoF. García-ParraJ. ZazoS. TusquetsI. Ferrer-LozanoJ. MenendezS. ErolesP. ChamizoC. ServitjaS. Ramírez-MerinoN. LoboF. BellosilloB. CorominasJ.M. YelamosJ. SerranoS. LluchA. RoviraA. AlbanellJ. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer.Ann. Oncol.20122351156116410.1093/annonc/mdr36121908496
    [Google Scholar]
  82. DziamanT. LudwiczakH. CieslaJ.M. BanaszkiewiczZ. WinczuraA. ChmielarczykM. WisniewskaE. MarszalekA. TudekB. OlinskiR. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1.PLoS One2014912e11555810.1371/journal.pone.011555825526641
    [Google Scholar]
  83. ZhouY. TangS. ChenT. NiuM.M. Structure-based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly (ADP-Ribose) polymerase-1 (PARP-1) inhibitors.Molecules20192423425810.3390/molecules2423425831766720
    [Google Scholar]
  84. AlmeleebiaT.M. AhamadS. AhmadI. AlshehriA. AlkhathamiA.G. MohammadY. Identification of PARP12 inhibitors by virtual screening and molecular dynamics simulations.Front. Pharmacol.20223847499
    [Google Scholar]
  85. ChenA. PARP inhibitors: Its role in treatment of cancer.Chin. J. Cancer201130746347110.5732/cjc.011.1011121718592
    [Google Scholar]
  86. PlummerR. JonesC. MiddletonM. WilsonR. EvansJ. OlsenA. CurtinN. BoddyA. McHughP. NewellD. HarrisA. JohnsonP. SteinfeldtH. DewjiR. WangD. RobsonL. CalvertH. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors.Clin. Cancer Res.200814237917792310.1158/1078‑0432.CCR‑08‑122319047122
    [Google Scholar]
  87. BauerP.I. BukiK.G. HakamA. KunE. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity.Biochem. J.19902701172610.1042/bj27000172144419
    [Google Scholar]
  88. ZhouP. WangJ. MishailD. WangC.Y. Recent advancements in PARP inhibitors-based targeted cancer therapy.Precis. Clin. Med.20203318720110.1093/pcmedi/pbaa03032983586
    [Google Scholar]
  89. UnderhillC. ToulmondeM. BonnefoiH. A review of PARP inhibitors: From bench to bedside.Ann. Oncol.201122226827910.1093/annonc/mdq32220643861
    [Google Scholar]
  90. MitriZ. GoodyearS.M. MillsG. Strategies for the prevention or reversal of PARP inhibitor resistance.Expert Rev. Anticancer Ther.2024241095997510.1080/14737140.2024.239325139145413
    [Google Scholar]
  91. ChaudhuriR.A. NussenzweigA. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling.Nat. Rev. Mol. Cell Biol.2017181061062110.1038/nrm.2017.5328676700
    [Google Scholar]
  92. RobsonM.E. ImS.A. SenkusE. XuB. DomchekS.M. MasudaN. DelalogeS. TungN. ArmstrongA. DymondM. FieldingA. AllenA. ConteP. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer.Eur. J. Cancer2023184394710.1016/j.ejca.2023.01.03136893711
    [Google Scholar]
  93. LittonJ.K. RugoH.S. EttlJ. HurvitzS.A. GonçalvesA. LeeK.H. FehrenbacherL. YerushalmiR. MinaL.A. MartinM. RochéH. ImY.H. QuekR.G.W. MarkovaD. TudorI.C. HannahA.L. EiermannW. BlumJ.L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation.N. Engl. J. Med.2018379875376310.1056/NEJMoa180290530110579
    [Google Scholar]
  94. FreyerG PothuriB HanS ChaseD MonkB HeitzF BurgerR GabaL LeV.L GuerraE BenderD. 17 Safety and patient-reported outcomes in patients receiving niraparib in the PRIMA/ENGOT-OV26/GOG-3012 trial.Inter. J. Gynecolog. Cancer2020303A12A13
    [Google Scholar]
  95. ColemanR.L. FlemingG.F. BradyM.F. SwisherE.M. SteffensenK.D. FriedlanderM. OkamotoA. MooreK.N. Efrat Ben-BaruchN. WernerT.L. ClovenN.G. OakninA. DiSilvestroP.A. MorganM.A. NamJ.H. LeathC.A.III NicumS. HagemannA.R. LittellR.D. CellaD. Baron-HayS. Garcia-DonasJ. MizunoM. Bell-McGuinnK. SullivanD.M. BachB.A. BhattacharyaS. RatajczakC.K. AnsellP.J. DinhM.H. AghajanianC. BookmanM.A. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer.N. Engl. J. Med.2019381252403241510.1056/NEJMoa190970731562800
    [Google Scholar]
  96. MooreK. ColomboN. ScambiaG. KimB.G. OakninA. FriedlanderM. LisyanskayaA. FloquetA. LearyA. SonkeG.S. GourleyC. BanerjeeS. OzaA. González-MartínA. AghajanianC. BradleyW. MathewsC. LiuJ. LoweE.S. BloomfieldR. DiSilvestroP. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.N. Engl. J. Med.2018379262495250510.1056/NEJMoa181085830345884
    [Google Scholar]
  97. GeethakumariR.P. SchiewerM.J. KnudsenK.E. KellyW.K. PARP inhibitors in prostate cancer.Curr. Treat. Options Oncol.20171863710.1007/s11864‑017‑0480‑228540598
    [Google Scholar]
  98. Bonod.J. MateoJ. FizaziK. SaadF. ShoreN. SandhuS. ChiK.N. SartorO. AgarwalN. OlmosD. Thiery-VuilleminA. TwardowskiP. MehraN. GoesslC. KangJ. BurgentsJ. WuW. KohlmannA. AdelmanC.A. HussainM. Olaparib for metastatic castration-resistant prostate cancer.N. Engl. J. Med.2020382222091210210.1056/NEJMoa191144032343890
    [Google Scholar]
  99. FizaziK. FoulonS. CarlesJ. RoubaudG. McDermottR. FléchonA. TombalB. SupiotS. BertholdD. RonchinP. KacsoG. GravisG. CalabroF. BerdahJ.F. HasbiniA. SilvaM. Thiery-VuilleminA. LatorzeffI. MoureyL. LaguerreB. Abadie-LacourtoisieS. MartinE. KouriE.C. EscandeA. RoselloA. MagneN. SchlurmannF. PriouF. Chand-FoucheM.E. FreixaS.V. JamaluddinM. RiegerI. BossiA. PEACE-1 investigators Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design.Lancet2022399103361695170710.1016/S0140‑6736(22)00367‑135405085
    [Google Scholar]
  100. Bonod.J.S. MehraN. ScagliottiG.V. CastroE. DorffT. StirlingA. StenzlA. FlemingM.T. HiganoC.S. SaadF. ButtiglieroC. Oortv.I.M. LairdA.D. MataM. ChenH.C. HealyC.G. CzibereA. FizaziK. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): An open-label, phase 2 trial.Lancet Oncol.20212291250126410.1016/S1470‑2045(21)00376‑434388386
    [Google Scholar]
  101. JacksonL.M. MoldovanG.C. Mechanisms of PARP 1 inhibitor resistance and their Implications for cancer Treatment.NAR Cancer202244zcac042
    [Google Scholar]
  102. KimD. NamH.J. PARP inhibitors: Clinical limitations and recent attempts to overcome them.Int. J. Mol. Sci.20222315841210.3390/ijms2315841235955544
    [Google Scholar]
  103. CollotT. NiogretJ. CarnetM. ChevrierS. HumblinE. FavierL. Bengrine-lefevreL. DesmoulinsI. ArnouldL. BoidotR. PARP inhibitor resistance and TP53 mutations in patients treated with olaparib for BRCA-mutated cancer: Four case reports.Mol. Med. Rep.20202317510.3892/mmr.2020.1171333236159
    [Google Scholar]
  104. CarreiraS. PortaN. Arce-GallegoS. SeedG. Llop-GuevaraA. BianchiniD. RescignoP. PaschalisA. BertanC. BakerC. GoodallJ. MirandaS. RiisnaesR. FigueiredoI. FerrairaA. PereiraR. CrespoM. GurelB. RodriguesT.N. PettittS.J. YuanW. SerraV. RekowskiJ . LordC.J. HallE. MateoJ. Bonod.J.S. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial.Cancer Discov.202111112812282710.1158/2159‑8290.CD‑21‑0007
    [Google Scholar]
  105. HeekeA.L. PishvaianM.J. LynceF. HeekeA.L. PishvaianM. LynceF. XiuJ. BrodyJ.R. ChenW.J. BakerT.M. MarshallJ.L. IsaacsC.S. Prevalence of homologous recombination-related gene mutations across multiple cancer types.JCO Precis. Oncol.20182018PO.17.0028610.1200/PO.17.00286
    [Google Scholar]
  106. PengY. LiaoQ. TanW. PengC. HuZ. ChenY. LiZ. LiJ. ZhenB. ZhuW. LiX. YaoY. SongQ. LiuC. QiX. HeF. PeiH. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors.Nat. Commun.2019101122410.1038/s41467‑019‑09232‑830874560
    [Google Scholar]
  107. RottenbergS JaspersJE KersbergenA Burgd.E High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs.Proc. Natl. Acad. Sci. USA.20081054417079e17084
    [Google Scholar]
  108. KimH. XuH. GeorgeE. HallbergD. KumarS. JagannathanV. MedvedevS. KinoseY. DevinsK. VermaP. LyK. WangY. GreenbergR.A. SchwartzL. JohnsonN. ScharpfR.B. MillsG.B. ZhangR. VelculescuV.E. BrownE.J. SimpkinsF. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models.Nat. Commun.2020111372610.1038/s41467‑020‑17127‑232709856
    [Google Scholar]
  109. FooteK.M. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1- (methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): A potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity.J. Med. Chem.2013562125213810.1021/jm301859s23394205
    [Google Scholar]
  110. KimH. GeorgeE. RaglandR.L. RafailS. ZhangR. KreplerC. MorganM.A. HerlynM. BrownE.J. SimpkinsF. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models.Clin. Cancer Res.201723123097310810.1158/1078‑0432.CCR‑16‑227327993965
    [Google Scholar]
  111. YazinskiS.A. ComaillsV. BuissonR. GenoisM.M. NguyenH.D. HoC.K. KwanT.T. MorrisR. LaufferS. NussenzweigA. RamaswamyS. BenesC.H. HaberD.A. MaheswaranS. BirrerM.J. ZouL. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells.Genes Dev.201731331833210.1101/gad.290957.11628242626
    [Google Scholar]
  112. KarnitzL.M. ZouL. Molecular pathways: Targeting ATR in cancer therapy.Clin. Cancer Res.201521214780478510.1158/1078‑0432.CCR‑15‑047926362996
    [Google Scholar]
  113. NgoiN.Y.L. PhamM.M. TanD.S.P. YapT.A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine.Trends Cancer202171093095710.1016/j.trecan.2021.06.00234215565
    [Google Scholar]
  114. JiaoS. XiaW. YamaguchiH. WeiY. ChenM.K. HsuJ.M. HsuJ.L. YuW.H. DuY. LeeH.H. LiC.W. ChouC.K. LimS.O. ChangS.S. LittonJ. ArunB. HortobagyiG.N. HungM.C. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression.Clin. Cancer Res.201723143711372010.1158/1078‑0432.CCR‑16‑321528167507
    [Google Scholar]
  115. VekariyaU. MinakhinL. ChandramoulyG. TyagiM. KentT. Sullivan-ReedK. AtkinsJ. RalphD. Nieborowska-SkorskaM. KukuyanA.M. TangH.Y. PomerantzR.T. SkorskiT. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks.Nat. Commun.2024151582210.1038/s41467‑024‑50158‑738987289
    [Google Scholar]
  116. FengF.Y. Bonod.J.S. RubinM.A. KnudsenK.E. Chromatin to clinic: The molecular rationale for PARP1 inhibitor function.Mol. Cell201558692593410.1016/j.molcel.2015.04.01626091341
    [Google Scholar]
  117. ChandS.N. ZareiM. SchiewerM.J. KamathA.R. RomeoC. LalS. CozzitortoJ.A. NevlerA. ScolaroL. LondinE. JiangW. Meisner-KoberN. PishvaianM.J. KnudsenK.E. YeoC.J. PascalJ.M. WinterJ.M. BrodyJ.R. Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors.Cancer Res.201777185011502510.1158/0008‑5472.CAN‑16‑270428687616
    [Google Scholar]
  118. SunC. FangY. YinJ. ChenJ. JuZ. ZhangD. ChenX. VellanoC.P. JeongK.J. NgP.K.S. EterovicA.K.B. BholaN.H. LuY. WestinS.N. GrandisJ.R. LinS.Y. ScottK.L. PengG. BruggeJ. MillsG.B. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers.Sci. Transl. Med.20179392eaal514810.1126/scitranslmed.aal514828566428
    [Google Scholar]
  119. YangB. LiX. FuY. GuoE. YeY. LiF. LiuS. XiaoR. LiuC. LuF. HuangJ. QinT. HanL. PengG. MillsG.B. SunC. ChenG. MEK inhibition remodels the immune landscape of mutant KRAS tumours to overcome resistance to PARP and immune checkpoint inhibitors.Cancer Res.2021811027142729
    [Google Scholar]
  120. SzumilakM. Wiktorowska-OwczarekA. StanczakA. Hybrid drugs—A strategy for overcoming anticancer drug resistance?Molecules2021269260110.3390/molecules2609260133946916
    [Google Scholar]
  121. WeiL. WangM. WangQ. HanZ. Dual targeting, a new strategy for novel PARP inhibitor discovery.Drug Discov. Ther.202115630030910.5582/ddt.2021.0110035034923
    [Google Scholar]
  122. JuvekarA. BurgaL.N. HuH. LunsfordE.P. IbrahimY.H. BalmañàJ. RajendranA. PapaA. SpencerK. LyssiotisC.A. NardellaC. PandolfiP.P. BaselgaJ. ScullyR. AsaraJ.M. CantleyL.C. WulfG.M. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer.Cancer Discov.20122111048106310.1158/2159‑8290.CD‑11‑033622915751
    [Google Scholar]
  123. ZhouS. LiD. XiaoD. WuT. Inhibition of PKM2 enhances sensitivity of olaparib to ovarian cancer cells and induces DNA damage.Int. J. Biol. Sci.20221841555e1568
    [Google Scholar]
  124. StewartR.A. PiliéP.G. YapT.A. Development of PARP and immune-checkpoint inhibitor combinations.Cancer Res.201878246717672510.1158/0008‑5472.CAN‑18‑265230498083
    [Google Scholar]
  125. OforiS. AwuahS.G. Small-molecule poly(ADP-ribose) polymerase and PD-L1 inhibitor conjugates as dual-action anticancer agents.ACS Omega201947125841259710.1021/acsomega.9b0110631460379
    [Google Scholar]
  126. YuanZ. ChenS. ChenC. ChenJ. ChenC. DaiQ. GaoC. JiangY. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy.Eur. J. Med. Chem.20171381135114610.1016/j.ejmech.2017.07.05028763648
    [Google Scholar]
  127. GogolaE. DuarteA.A. Ruiterd.J.R. WiegantW.W. SchmidJ.A. Bruijnd.R. JamesD.I. LlobetG.S. VisD.J. AnnunziatoS. Broekd.v.B. BarazasM. KersbergenA. Vend.v.M. TarsounasM. OgilvieD.J. Vugtv.M. WesselsL.F.A. BartkovaJ. GromovaI. Andújar-SánchezM. BartekJ. LopesM. Attikumv.H. BorstP. JonkersJ. RottenbergS. Selective loss of parg restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality.Cancer Cell201833610781093.e1210.1016/j.ccell.2018.05.00829894693
    [Google Scholar]
  128. SladeD. PARP and PARG inhibitors in cancer treatment.Genes Dev.2020345-636039410.1101/gad.334516.11932029455
    [Google Scholar]
  129. BurslemG.M. CrewsC.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.Cell2020181110211410.1016/j.cell.2019.11.03131955850
    [Google Scholar]
  130. AlabiS.B. CrewsC.M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs.J. Biol. Chem.202129610064710.1016/j.jbc.2021.10064733839157
    [Google Scholar]
  131. CaoC. YangJ. ChenY. ZhouP. WangY. DuW. ZhaoL. ChenY. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting chimera degrader of PARP1 for treating cancers.J. Med. Chem.20206319110121103310.1021/acs.jmedchem.0c0082132924477
    [Google Scholar]
  132. ZhangZ. ChangX. ZhangC. ZengS. LiangM. MaZ. WangZ. HuangW. ShenZ. Identification of probe-quality degraders for poly(ADP-ribose) polymerase-1 (PARP-1).J. Enzyme Inhib. Med. Chem.20203511606161510.1080/14756366.2020.180438232779949
    [Google Scholar]
  133. ZhaoQ. LanT. SuS. RaoY. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule.Chem. Commun.201955336937210.1039/C8CC07813K30540295
    [Google Scholar]
  134. FriedW. TyagiM. MinakhinL. ChandramoulyG. TredinnickT. RamanjuluM. AuerbacherW. CalbertM. RusanovT. HoangT. BorisonnikN. BetschR. KraisJ.J. WangY. VekariyaU.M. GordonJ. MortonG. KentT. SkorskiT. JohnsonN. ChildersW. ChenX.S. PomerantzR.T. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors.Nat. Commun.2024151286210.1038/s41467‑024‑46593‑138580648
    [Google Scholar]
  135. ZatreanuD. RobinsonH.M.R. AlkhatibO. BoursierM. FinchH. GeoL. GrandeD. GrinkevichV. HealdR.A. LangdonS. MajithiyaJ. McWhirterC. MartinN.M.B. MooreS. NevesJ. RajendraE. RanzaniM. SchaedlerT. StockleyM. WigginsK. BroughR. SridharS. GulatiA. ShaoN. BadderL.M. NovoD. KnightE.G. MarlowR. HaiderS. CallenE. HewittG. SchimmelJ. PrevoR. AlliC. FerdinandA. BellC. BlencoweP. BotC. CalderM. CharlesM. CurryJ. EkwuruT. EwingsK. KrajewskiW. MacDonaldE. McCarronH. PangL. PedderC. RigoreauL. SwarbrickM. WheatleyE. WillisS. WongA.C. NussenzweigA. TijstermanM. TuttA. BoultonS.J. HigginsG.S. PettittS.J. SmithG.C.M. LordC.J. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.Nat. Commun.2021121363610.1038/s41467‑021‑23463‑834140467
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128343916250212094926
Loading
/content/journals/dmbl/10.2174/0118723128343916250212094926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test