Skip to content
2000
image of Development and Validation of HPLC Method for Metformin and Canagliflozin in Bulk and Pharmaceutical Dosage Form Using the QbD Approach

Abstract

Introduction

A simple, precise, robust, and accurate high-performance liquid chromatography (HPLC) technique has been devised and validated for the simultaneous quantification of canagliflozin (CAN) and metformin (MET) in the dose form of combination tablets.

Methods

The significance and interaction effects of independent variables on the response factors were evaluated using 32 factorial design. Analysis of variance (ANOVA) and plots displayed the final chromatographic conditions of the procedure. Methanol: water separation was carried out using a C18 column (4.6 mm × 250 mm; 5 μm). Ultraviolet (UV) detection at 255 nm was found to have good sensitivity. Following the development of the method, its accuracy, precision, linearity, and robustness with the active substances were examined.

Results

The technique developed for the analysis of MET and CAN exhibited an R2 value of 0.999. The method's relative standard deviation (%RSD) for accuracy and precision was discovered to be less than 2%. The recovery research, which was conducted at 50, 100, and 150% levels, was used to determine the accuracy of the procedure. The precision of the approach was examined using repeatability, intraday, and interday analysis; a low percentage of RSD suggested a high level of precision for the suggested method.

Conclusion

The regular analysis of MET and CAN in their combined dose form can be effectively conducted using the suggested methodology. The results have shown the recommended method as suitable for both the precise and accurate formulation of MET and CAN and their bulk determination.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128365462250312061951
2025-04-23
2025-10-01
Loading full text...

Full text loading...

References

  1. Chandrasekaran P. Weiskirchen R. The role of obesity in type 2 diabetes mellitus—An overview. Int. J. Mol. Sci. 2024 25 3 1882 10.3390/ijms25031882 38339160
    [Google Scholar]
  2. Su J. Luo Y. Hu S. Tang L. Ouyang S. Advances in research on type 2 diabetes mellitus targets and therapeutic agents. Int. J. Mol. Sci. 2023 24 17 13381 10.3390/ijms241713381 37686185
    [Google Scholar]
  3. Sabari S.S. Balasubramani K. Iyer M. Sureshbabu H.W. Venkatesan D. Gopalakrishnan A.V. Narayanaswamy A. Senthil Kumar N. Vellingiri B. Type 2 diabetes (T2DM) and Parkinson’s disease (PD): A mechanistic approach. Mol. Neurobiol. 2023 60 8 4547 4573 10.1007/s12035‑023‑03359‑y 37118323
    [Google Scholar]
  4. Neves J.S. Borges-Canha M. Vasques-Nóvoa F. Green J.B. Leiter L.A. Granger C.B. Carvalho D. Leite-Moreira A. Hernandez A.F. Del Prato S. McMurray J.J.V. Ferreira J.P. GLP-1 receptor agonist therapy with and without SGLT2 inhibitors in patients with Type 2 diabetes. J. Am. Coll. Cardiol. 2023 82 6 517 525 10.1016/j.jacc.2023.05.048 37532422
    [Google Scholar]
  5. Neuen B.L. Heerspink H.J.L. Vart P. Claggett B.L. Fletcher R.A. Arnott C. de Oliveira Costa J. Falster M.O. Pearson S.A. Mahaffey K.W. Neal B. Agarwal R. Bakris G. Perkovic V. Solomon S.D. Vaduganathan M. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria. Circulation 2024 149 6 450 462 10.1161/CIRCULATIONAHA.123.067584 37952217
    [Google Scholar]
  6. Tuersun A. Hou G. Cheng G. Efficacy and safety of the combination or monotherapy with GLP-1 receptor agonists and SGLT-2 inhibitors in Type 2 diabetes mellitus: An update systematic review and meta-analysis. Am. J. Med. Sci. 2024 368 6 579 588 10.1016/j.amjms.2024.07.011 38977245
    [Google Scholar]
  7. Aroda V.R. Billings L.K. GLP-1 RA and SGLT2 inhibitors. J. Am. Coll. Cardiol. 2023 82 6 526 528 10.1016/j.jacc.2023.06.005 37532423
    [Google Scholar]
  8. Rolek B. Haber M. Gajewska M. Rogula S. Pietrasik A. Gąsecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J. Cardiovasc. Dev. Dis. 2023 10 8 322 10.3390/jcdd10080322 37623335
    [Google Scholar]
  9. Zhu J.J. Wilding J.P.H. Gu X.S. Combining GLP-1 receptor agonists and SGLT-2 inhibitors for cardiovascular disease prevention in type 2 diabetes: A systematic review with multiple network meta-regressions. World J. Diabetes 2024 15 10 2135 2146 10.4239/wjd.v15.i10.2135 39493569
    [Google Scholar]
  10. Ali A. Mekhaeil B. Biziotis O.D. Tsakiridis E.E. Ahmadi E. Wu J. Wang S. Singh K. Menjolian G. Farrell T. Mesci A. Liu S. Berg T. Bramson J.L. Steinberg G.R. Tsakiridis T. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun. Biol. 2023 6 1 919 10.1038/s42003‑023‑05289‑w 37684337
    [Google Scholar]
  11. Borisov A.N. Kutz A. Christ E.R. Heim M.H. Ebrahimi F. Canagliflozin and metabolic associated fatty liver disease in patients with diabetes mellitus: New insights from CANVAS. J. Clin. Endocrinol. Metab. 2023 108 11 2940 2949 10.1210/clinem/dgad249 37149821
    [Google Scholar]
  12. Simms-Williams N Treves N Yin H Lu S Yu O Pradhan R Renoux C Suissa S Azoulay L. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. BMJ 2024 385 e078242 10.1136/bmj.q1237
    [Google Scholar]
  13. Dabour M.S. Abdelgawad I.Y. Grant M.K.O. El-Sawaf E.S. Zordoky B.N. Canagliflozin mitigates carfilzomib-induced endothelial apoptosis via an AMPK-dependent pathway. Biomed. Pharmacother. 2023 164 114907 10.1016/j.biopha.2023.114907 37247463
    [Google Scholar]
  14. Jiang E. Dinesh A. Jadhav S. Miller R.A. Garcia G.G. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci. 2023 328 121904 10.1016/j.lfs.2023.121904 37406767
    [Google Scholar]
  15. Nguyen B.N. Mital S. Bugden S. Nguyen H.V. Cost‐effectiveness of canagliflozin and dapagliflozin for treatment of patients with chronic kidney disease and type 2 diabetes. Diabetes Obes. Metab. 2023 25 10 3030 3039 10.1111/dom.15201 37409571
    [Google Scholar]
  16. Zeng Y. Jiang H. Zhang X. Xu J. Wu X. Xu Q. Cai W. Ying H. Zhou R. Ding Y. Ying K. Song X. Chen Z. Zeng L. Zhao L. Yu F. Canagliflozin reduces chemoresistance in hepatocellular carcinoma through PKM2-c-Myc complex-mediated glutamine starvation. Free Radic. Biol. Med. 2023 208 571 586 10.1016/j.freeradbiomed.2023.09.006 37696420
    [Google Scholar]
  17. Shim B. Stokum J.A. Moyer M. Tsymbalyuk N. Tsymbalyuk O. Keledjian K. Ivanova S. Tosun C. Gerzanich V. Simard J.M. Canagliflozin, an inhibitor of the Na+-coupled D-glucose cotransporter, SGLT2, inhibits astrocyte swelling and brain swelling in cerebral ischemia. Cells 2023 12 18 2221 10.3390/cells12182221 37759444
    [Google Scholar]
  18. Corremans R. Vervaet B.A. Dams G. D’Haese P.C. Verhulst A. Metformin and canagliflozin are equally renoprotective in diabetic kidney disease but have no synergistic effect. Int. J. Mol. Sci. 2023 24 10 9043 10.3390/ijms24109043 37240387
    [Google Scholar]
  19. Dutta S. Shah R.B. Singhal S. Dutta S.B. Bansal S. Sinha S. Haque M. Metformin: A review of potential mechanism and therapeutic utility beyond diabetes. Drug Des. Devel. Ther. 2023 17 1907 1932 10.2147/DDDT.S409373 37397787
    [Google Scholar]
  20. Alrouji M. Al-kuraishy H.M. Al-Gareeb A.I. Ashour N.A. Jabir M.S. Negm W.A. Batiha G.E.S. Metformin role in Parkinson’s disease: A double-sword effect. Mol. Cell. Biochem. 2024 479 4 975 991 10.1007/s11010‑023‑04771‑7 37266747
    [Google Scholar]
  21. Dunne F. Newman C. Alvarez-Iglesias A. Ferguson J. Smyth A. Browne M. O’Shea P. Devane D. Gillespie P. Bogdanet D. Kgosidialwa O. Egan A. Finn Y. Gaffney G. Khattak A. O’Keeffe D. Liew A. O’Donnell M. Early metformin in gestational diabetes: A randomized clinical trial. JAMA 2023 330 16 1547 1556 10.1001/jama.2023.19869 37786390
    [Google Scholar]
  22. Bailey C.J. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes. Metab. 2024 26 Suppl. 3 3 19 10.1111/dom.15663 38784991
    [Google Scholar]
  23. Naseri A. Sanaie S. Hamzehzadeh S. Seyedi-Sahebari S. Hosseini M.S. Gholipour-khalili E. Rezazadeh-Gavgani E. Majidazar R. Seraji P. Daneshvar S. Rezazadeh-Gavgani E. Metformin: New applications for an old drug. J. Basic Clin. Physiol. Pharmacol. 2023 34 2 151 160 10.1515/jbcpp‑2022‑0252 36474458
    [Google Scholar]
  24. Nojima I. Wada J. Metformin and its immune-mediated effects in various diseases. Int. J. Mol. Sci. 2023 24 1 755 10.3390/ijms24010755 36614197
    [Google Scholar]
  25. Desai S.A. Mardia R.B. Suhagia B.N. Desai H.T. Development and validation of stability-indicating HPTLC method for simultaneous estimation of Metformin, Saxagliptin, and Dapagliflozin in their combined matrix using AQbD. Bull. Env. Pharmacol. Life Sci. 2022 12 32 42
    [Google Scholar]
  26. Li G. Zhang D. Ni J. Wang S. Clinical efficacy of different doses of canagliflozin combined with metformin in the treatment of type 2 diabetes: Meta-analysis. Altern. Ther. Health Med. 2023 29 7 328 334 37499149
    [Google Scholar]
  27. Tomlinson B. Li Y.H. Canagliflozin + metformin ER for the treatment of type 2 diabetes: The evidence to date. Expert Opin. Pharmacother. 2023 24 18 1937 1947 10.1080/14656566.2023.2276180 37881952
    [Google Scholar]
  28. Khan N. Development and validation of stability-indicating RP-Hplc method for simultaneous determination of canagliflozin and metformin in fixed-dose combination. J. Res. Pharm. 2023 27 3
    [Google Scholar]
  29. Kumar L. Quality-by-design driven analytical method (AQbD) development and validation of HPLC–UV technique to quantify rivastigmine hydrogen tartrate in lipidic nanocarriers: Forced degradation, and assessment of drug content and in vitro release studies. Microchem. J. 2023 193 108944 10.1016/j.microc.2023.108944
    [Google Scholar]
  30. Susmitha A. Rajitha G. Eri G.K. A comprehensive review on QbD driven analytical procedures developed for the analysis of various drugs. J. Liq. Chromatogr. Relat. Technol. 2023 46 1-5 12 36 10.1080/10826076.2023.2204238
    [Google Scholar]
  31. Sathuluri K. Bakam R. Jain R. Dande A. Gajbhiye R. Ravichandiran V. Peraman R. Analytical quality by design (AQbD) in the ICHQ14 guidelines for analytical procedure development. Accredit. Qual. Assur. 2024 1 4
    [Google Scholar]
  32. Kumar M. Pant A. Chopra S. Bhatia A. AQbD enabled method development and quantification of asiaticoside in foam-based formulations. Accredit. Qual. Assur. 2024 1 6
    [Google Scholar]
  33. Lakka N.S. Kuppan C. Vadagam N. Reddamoni S.Y. Muthusamy C. Degradation pathways and impurity profiling of the anticancer drug apalutamide by HPLC and LC–MS/MS and separation of impurities using design of experiments. Biomed. Chromatogr. 2023 37 2 e5549 10.1002/bmc.5549 36409057
    [Google Scholar]
  34. Nagulancha B.R. Lakka N.S. Vandavasi K.R. Stability‐indicating method development and validation for quantitative estimation of assay and organic impurities of antiviral drug baloxavir marboxil in drug substance and pharmaceutical dosage form using HPLC and LC–MS methods. Biomed. Chromatogr. 2023 37 8 e5644 10.1002/bmc.5644 37052118
    [Google Scholar]
  35. Chakraborty S. Mondal S. A green eco-friendly analytical method development, validation, and stress degradation studies of favipiravir in bulk and different tablet dosages form by UV-spectrophotometric and RP-HPLC methods with their comparison by using ANOVA and in-vitro dissolution studies. Int. J. Pharm. Investig. 2023 13 2 290 305 10.5530/ijpi.13.2.039
    [Google Scholar]
  36. Patil A. Pardeshi S. Kapase M. Patil P. More M. Dhole S. Kole E. Deshmukh P. Gholap A. Mujumdar A. Naik J. Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach. Dry. Technol. 2024 42 4 661 673 10.1080/07373937.2023.2298778
    [Google Scholar]
  37. Shirsath N.R. Goswami A.K. Design and development of solid dispersion of valsartan by a lyophilization technique: A 32 factorial design approach. Micro Nanosyst. 2021 13 1 90 102 10.2174/1876402912666200206155430
    [Google Scholar]
  38. Aghaei M. Talari F.S. Mollahosseini A. Keramati M. Validation of a high‐performance liquid chromatography method for determining lysophosphatidylcholine content in bovine pulmonary surfactant medication. Biomed. Chromatogr. 2024 38 8 e5926 10.1002/bmc.5926 38881378
    [Google Scholar]
  39. Correia A.C. Moreira J.N. Sousa Lobo J.M. Silva A.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery. Expert Opin. Drug Deliv. 2023 20 12 1731 1748 10.1080/17425247.2023.2274902 37905547
    [Google Scholar]
  40. El-Sayed H.M. Abdellatef H.E. Hendawy H.A.M. El-Abassy O.M. Ibrahim H. DoE-enhanced development and validation of eco-friendly RP-HPLC method for analysis of safinamide and its precursor impurity: QbD approach. Microchem. J. 2023 190 108730 10.1016/j.microc.2023.108730
    [Google Scholar]
  41. Koli R. Mannur V.S. Gudasi S. Singadi R. Nashipudi A. Development of directly compressible polyherbal tablets by using QbD approach a novel immunomodulatory material. J Med Pharm Allied Sci. 2023 11 16 5476 5484
    [Google Scholar]
  42. Patra C.N. Mishra A. Jena G.K. Panigrahi K.C. Sruti J. Ghose D. Sahoo L. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance. J. Pharm. Innov. 2023 18 3 1279 1297 10.1007/s12247‑023‑09714‑9
    [Google Scholar]
  43. Rajmane A.D. Shinde K.P. A review of HPLC method development and validation as per ICH guidelines. Asian J. Pharm. Anal. 2023 13 2 143 151 10.52711/2231‑5675.2023.00024
    [Google Scholar]
  44. Weiner A.M.J. Irijalba I. Gallego M.P. Ibarburu I. Sainz L. Goñi-de-Cerio F. Quevedo C. Muriana A. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline. Reprod. Toxicol. 2024 123 108513 10.1016/j.reprotox.2023.108513 38016617
    [Google Scholar]
  45. Zhu X. A linear validation method of analytical procedures based on the double logarithm function linear fitting. Anal. Chim. Acta 2024 1310 342695 10.1016/j.aca.2024.342695 38811139
    [Google Scholar]
  46. Saburov I.K. Yunuskhodjayeva N.A. Validation of the analytical method for the determination of dexketoprofen tromethamine as a residual substance. Specificity, accuracy, linearity, repeatability, detection limit and quantitation limit of the method. Campanian Naturalist. 2024 28 1 1537 1543
    [Google Scholar]
  47. Lu X. Xie Q. Pan X. Zhang R. Zhang X. Peng G. Zhang Y. Shen S. Tong N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther. 2024 9 1 262 10.1038/s41392‑024‑01951‑9 39353925
    [Google Scholar]
  48. Sodikov SS Eshimov Z Ergashev N Muxammadiyev T Modern view in the treatment of patients with type 2 diabetes mellitus. Educ. Res. Univ. Sci. 2024 3 4 SPECIAL 156 165
    [Google Scholar]
  49. Tobe S.W. Mavrakanas T.A. Bajaj H.S. Levin A. Tangri N. Slee A. Neuen B.L. Perkovic V. Mahaffey K.W. Rapattoni W. Ang F.G. Impact of canagliflozin on kidney and cardiovascular outcomes by type 2 diabetes duration: A pooled analysis of the CANVAS program and CREDENCE trials. Diabetes Care 2024 47 3 501 507 10.2337/dc23‑1450 38252809
    [Google Scholar]
  50. Albalawy W.N. Youm E.B. Shipman K.E. Trull K.J. Baty C.J. Long K.R. Rbaibi Y. Wang X.P. Fagunloye O.G. White K.A. Jurczak M.J. Kashlan O.B. Weisz O.A. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake. Am. J. Physiol. Renal Physiol. 2024 326 6 F1041 F1053 10.1152/ajprenal.00005.2024 38660713
    [Google Scholar]
  51. Scott B. Day E.A. O’Brien K.L. Scanlan J. Cromwell G. Scannail A.N. McDonnell M.E. Finlay D.K. Lynch L. Metformin and feeding increase levels of the appetite-suppressing metabolite Lac-Phe in humans. Nat. Metab. 2024 6 4 651 658 10.1038/s42255‑024‑01018‑7 38499765
    [Google Scholar]
  52. Bairagi A. Kothrukar R. Chikhale H. Kosanam S. Borse L. AQbD-novel strategy for analytical methods. Futur. J. Pharm. Sci. 2024 10 1 138 10.1186/s43094‑024‑00706‑1
    [Google Scholar]
  53. V L Sirisha Mulukuri N. Kumar S. Dhara M. Dheeraj Rajesh G. Kumar P. Statistical modeling, optimization and characterization of andrographolide loaded emulgel for its therapeutic application on skin cancer through enhancing its skin permeability. Saudi Pharm. J. 2024 32 6 102068 10.1016/j.jsps.2024.102068 38699597
    [Google Scholar]
  54. Mohamed MA Validated stability indicating chromatographic method for determination of baricitinib and its degradation products in their tablet dosage form: Implementation to content uniformity and in vitro dissolution studies. Annales Pharmaceutiques Françaises Elsevier Masson 2023 267 283
    [Google Scholar]
  55. Swarnkar P Gupta MK Maheshwari M Analytical method validation of compendial hplc method for pharmaceuticals as per recent usp and ich guidelines. 2021 11 1 10
    [Google Scholar]
  56. Rao N.V. Reddy K.J. Bharath P. Ramachandran D. Development and validation of a RP-HPLC method for the determination atropine and its impurities in pharmaceutical dosage form as per ICH guidelines. Curr. Trends Biotechnol. Pharm. 2022 16 3 417 428
    [Google Scholar]
  57. Tiwari R. Kumar A. Solanki P. Dhobi M. Sundaresan V. Kalaiselvan V. Raghuvanshi R.S. Analytical quality-by-design (AQbD) guided development of a robust HPLC method for the quantification of plumbagin from Plumbago species. J. Liq. Chromatogr. Relat. Technol. 2021 44 11-12 529 537 10.1080/10826076.2021.1973027
    [Google Scholar]
  58. Afonso Urich J.A. Marko V. Boehm K. Lara García R.A. Jeremic D. Paudel A. Development and validation of a stability-indicating uplc method for the determination of hexoprenaline in injectable dosage form using AQbD principles. Molecules 2021 26 21 6597 10.3390/molecules26216597 34771005
    [Google Scholar]
  59. Kant Chaudhary M. Misra A. Srivastava S. A multi-analyte HPTLC estimation of marker compounds in Pueraria tuberosa (Willd.) DC.: Application of AQbD approach for method optimization and greenness assessment. Microchem. J. 2024 199 109988 10.1016/j.microc.2024.109988
    [Google Scholar]
  60. Ghizzani V. Ascione A. Orlandini S. Furlanetto S. Massolini G. Luciani F. Development of an optimised icIEF method for harmonising quality control of monoclonal antibodies by using an AQbD approach. 34th International Symposium on Pharmaceutical and Biomedical Analysis-PBA 2024 pp. 138-139.
    [Google Scholar]
  61. Hamdache A. Grib L. Grib C. Adour L. Zatout H. Mezrouai A. Saraoui S. Forced degradation studies of sofosbuvir with a developed and validated RP-HPLC method as per ICH guidelines. Chromatographia 2021 84 12 1131 1140 10.1007/s10337‑021‑04099‑8
    [Google Scholar]
  62. Wadie M. Abdel-Moety E.M. Rezk M.R. Marzouk H.M. A novel eco-friendly HPLC method with dual detection modes for versatile quantification of dutasteride and silodosin in pharmaceutical formulation, dissolution testing and spiked human plasma. Microchem. J. 2024 197 109753 10.1016/j.microc.2023.109753
    [Google Scholar]
  63. Zhang C. Bu Q. Li C. Lu P. Liu C. Huang B. Simultaneous determination of abrine, hypaphorine, schaftoside and soyasaponin Bb in rat plasma by UPLC–MS/MS and its application to a pharmacokinetic study after oral administration of Abrus cantoniensis Hance extract. Biomed. Chromatogr. 2023 37 10 e5696 10.1002/bmc.5696 37357379
    [Google Scholar]
  64. Suresh A. Balakrishnan A. Ramaswamy V. Natesan S. Analytical method development and validation for simultaneous estimation of Bempedoic acid and Ezetimibe in pure and its pharmaceutical dosage form by RP‐HPLC. Biomed. Chromatogr. 2024 38 9 e5938 10.1002/bmc.5938 38922950
    [Google Scholar]
  65. Mahmoudi A. De Francia S. Paul P. Development and validation of high‐performance liquid chromatography method for determination of clarithromycin in pharmaceutical tablets. J. Sep. Sci. 2023 46 21 2300424 10.1002/jssc.202300424 37650313
    [Google Scholar]
  66. Fawzy M.G. Said M.A. Valuation of environmental influence of recently invented high‐performance liquid chromatographic method for hypoglycemic mixtures of gliflozins and metformin in the presence of melamine impurities: Application of molecular modeling simulation approach. J. Sep. Sci. 2023 46 19 2300267 10.1002/jssc.202300267 37485588
    [Google Scholar]
  67. Sher M. Bashir S. Fatima A. Qaisar M.N. Naeem-ul-Hassan M. Simultaneous determination of metformin and glibenclamide by RP-HPLC in orodispersible tablets and their pharmacokinetic evaluation. Authorea Preprints 2023 10.22541/au.168287817.70016512/v1
    [Google Scholar]
  68. Santana I.M. Rostagno M.A. Breitkreitz M.C. Analytical quality-by-design (AQbD) approach for comprehensive analysis of bioactive compounds from Citrus peel wastes by UPLC. Anal. Bioanal. Chem. 2023 415 18 4411 4422 10.1007/s00216‑023‑04588‑9 36853412
    [Google Scholar]
  69. Shirsath N.R. Goswami A.K. Vildagliptin-loaded gellan gum mucoadhesive beads for sustained drug delivery: Design, optimisation and evaluation. Mater. Technol. 2021 36 11 647 659 10.1080/10667857.2020.1786783
    [Google Scholar]
  70. Kisan Chatki P. Mohan Mirashe M. Warokar A.S. Box-Behnken design in optimization of the green liquid chromatographic method for the quantification of Afatinib in drug product: AQbD approach. J. Liq. Chromatogr. Relat. Technol. 2024 47 16-20 349 359
    [Google Scholar]
  71. Perumal D.D. Krishnan M. Lakshmi K.S. Eco-friendly based stability-indicating RP-HPLC technique for the determination of escitalopram and etizolam by employing QbD approach. Green Chem. Lett. Rev. 2022 15 3 671 682 10.1080/17518253.2022.2127334
    [Google Scholar]
  72. Vasquez M Castro-Luna A Ramos-Cevallos NJ Ramos-Perfecto D Alcarraz-Curi M Segura-Vasquez J Cáceres-Antaurco D Analytical quality by design (AQbD) of the TLCScanner method for the determination of radiochemical purity of the radiopharmaceutical sodium iodide 131I oral solution. Molecules 2024 29 1883
    [Google Scholar]
  73. Peraman R. Bandi J. Kondreddy V.K. Kalva B. Kothakota S.G. Paritala J. Nagappan K. Yirgamreddy P.R. Analytical quality by design approach versus conventional approach: Development of HPLC-DAD method for simultaneous determination of etizolam and propranolol hydrochloride. J. Liq. Chromatogr. Relat. Technol. 2021 44 3-4 197 209 10.1080/10826076.2021.1874982
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128365462250312061951
Loading
/content/journals/dmbl/10.2174/0118723128365462250312061951
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HPLC ; ANOVA ; HPLC method ; Canagliflozin ; metformin ; 32 approach
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test