Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Introduction

A simple, precise, robust, and accurate high-performance liquid chromatography (HPLC) technique has been devised and validated for the simultaneous quantification of canagliflozin (CAN) and metformin (MET) in the dose form of combination tablets.

Methods

The significance and interaction effects of independent variables on the response factors were evaluated using 32 factorial design. Analysis of variance (ANOVA) and plots displayed the final chromatographic conditions of the procedure. Methanol: water separation was carried out using a C18 column (4.6 mm × 250 mm; 5 μm). Ultraviolet (UV) detection at 255 nm was found to have good sensitivity. Following the development of the method, its accuracy, precision, linearity, and robustness with the active substances were examined.

Results

The technique developed for the analysis of MET and CAN exhibited an R2 value of 0.999. The method's relative standard deviation (%RSD) for accuracy and precision was discovered to be less than 2%. The recovery research, which was conducted at 50, 100, and 150% levels, was used to determine the accuracy of the procedure. The precision of the approach was examined using repeatability, intraday, and interday analysis; a low percentage of RSD suggested a high level of precision for the suggested method.

Conclusion

The regular analysis of MET and CAN in their combined dose form can be effectively conducted using the suggested methodology. The results have shown the recommended method as suitable for both the precise and accurate formulation of MET and CAN and their bulk determination.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128365462250312061951
2025-04-23
2025-11-16
Loading full text...

Full text loading...

References

  1. ChandrasekaranP. WeiskirchenR. The role of obesity in type 2 diabetes mellitus—An overview.Int. J. Mol. Sci.2024253188210.3390/ijms2503188238339160
    [Google Scholar]
  2. SuJ. LuoY. HuS. TangL. OuyangS. Advances in research on type 2 diabetes mellitus targets and therapeutic agents.Int. J. Mol. Sci.202324171338110.3390/ijms24171338137686185
    [Google Scholar]
  3. SabariS.S. BalasubramaniK. IyerM. SureshbabuH.W. VenkatesanD. GopalakrishnanA.V. NarayanaswamyA. Senthil KumarN. VellingiriB. Type 2 diabetes (T2DM) and Parkinson’s disease (PD): A mechanistic approach.Mol. Neurobiol.20236084547457310.1007/s12035‑023‑03359‑y37118323
    [Google Scholar]
  4. NevesJ.S. Borges-CanhaM. Vasques-NóvoaF. GreenJ.B. LeiterL.A. GrangerC.B. CarvalhoD. Leite-MoreiraA. HernandezA.F. Del PratoS. McMurrayJ.J.V. FerreiraJ.P. GLP-1 receptor agonist therapy with and without SGLT2 inhibitors in patients with Type 2 diabetes.J. Am. Coll. Cardiol.202382651752510.1016/j.jacc.2023.05.04837532422
    [Google Scholar]
  5. NeuenB.L. HeerspinkH.J.L. VartP. ClaggettB.L. FletcherR.A. ArnottC. de Oliveira CostaJ. FalsterM.O. PearsonS.A. MahaffeyK.W. NealB. AgarwalR. BakrisG. PerkovicV. SolomonS.D. VaduganathanM. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria.Circulation2024149645046210.1161/CIRCULATIONAHA.123.06758437952217
    [Google Scholar]
  6. TuersunA. HouG. ChengG. Efficacy and safety of the combination or monotherapy with GLP-1 receptor agonists and SGLT-2 inhibitors in Type 2 diabetes mellitus: An update systematic review and meta-analysis.Am. J. Med. Sci.2024368657958810.1016/j.amjms.2024.07.01138977245
    [Google Scholar]
  7. ArodaV.R. BillingsL.K. GLP-1 RA and SGLT2 inhibitors.J. Am. Coll. Cardiol.202382652652810.1016/j.jacc.2023.06.00537532423
    [Google Scholar]
  8. RolekB. HaberM. GajewskaM. RogulaS. PietrasikA. GąseckaA. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain.J. Cardiovasc. Dev. Dis.202310832210.3390/jcdd1008032237623335
    [Google Scholar]
  9. ZhuJ.J. WildingJ.P.H. GuX.S. Combining GLP-1 receptor agonists and SGLT-2 inhibitors for cardiovascular disease prevention in type 2 diabetes: A systematic review with multiple network meta-regressions.World J. Diabetes202415102135214610.4239/wjd.v15.i10.213539493569
    [Google Scholar]
  10. AliA. MekhaeilB. BiziotisO.D. TsakiridisE.E. AhmadiE. WuJ. WangS. SinghK. MenjolianG. FarrellT. MesciA. LiuS. BergT. BramsonJ.L. SteinbergG.R. TsakiridisT. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy.Commun. Biol.20236191910.1038/s42003‑023‑05289‑w37684337
    [Google Scholar]
  11. BorisovA.N. KutzA. ChristE.R. HeimM.H. EbrahimiF. Canagliflozin and metabolic associated fatty liver disease in patients with diabetes mellitus: New insights from CANVAS.J. Clin. Endocrinol. Metab.2023108112940294910.1210/clinem/dgad24937149821
    [Google Scholar]
  12. Simms-WilliamsN TrevesN YinH LuS YuO PradhanR RenouxC SuissaS AzoulayL. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: Population based cohort study.BMJ2024385e07824210.1136/bmj.q1237
    [Google Scholar]
  13. DabourM.S. AbdelgawadI.Y. GrantM.K.O. El-SawafE.S. ZordokyB.N. Canagliflozin mitigates carfilzomib-induced endothelial apoptosis via an AMPK-dependent pathway.Biomed. Pharmacother.202316411490710.1016/j.biopha.2023.11490737247463
    [Google Scholar]
  14. JiangE. DineshA. JadhavS. MillerR.A. GarciaG.G. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments.Life Sci.202332812190410.1016/j.lfs.2023.12190437406767
    [Google Scholar]
  15. NguyenB.N. MitalS. BugdenS. NguyenH.V. Cost-effectiveness of canagliflozin and dapagliflozin for treatment of patients with chronic kidney disease and type 2 diabetes.Diabetes Obes. Metab.202325103030303910.1111/dom.1520137409571
    [Google Scholar]
  16. ZengY. JiangH. ZhangX. XuJ. WuX. XuQ. CaiW. YingH. ZhouR. DingY. YingK. SongX. ChenZ. ZengL. ZhaoL. YuF. Canagliflozin reduces chemoresistance in hepatocellular carcinoma through PKM2-c-Myc complex-mediated glutamine starvation.Free Radic. Biol. Med.202320857158610.1016/j.freeradbiomed.2023.09.00637696420
    [Google Scholar]
  17. ShimB. StokumJ.A. MoyerM. TsymbalyukN. TsymbalyukO. KeledjianK. IvanovaS. TosunC. GerzanichV. SimardJ.M. Canagliflozin, an inhibitor of the Na+-coupled D-glucose cotransporter, SGLT2, inhibits astrocyte swelling and brain swelling in cerebral ischemia.Cells20231218222110.3390/cells1218222137759444
    [Google Scholar]
  18. CorremansR. VervaetB.A. DamsG. D’HaeseP.C. VerhulstA. Metformin and canagliflozin are equally renoprotective in diabetic kidney disease but have no synergistic effect.Int. J. Mol. Sci.20232410904310.3390/ijms2410904337240387
    [Google Scholar]
  19. DuttaS. ShahR.B. SinghalS. DuttaS.B. BansalS. SinhaS. HaqueM. Metformin: A review of potential mechanism and therapeutic utility beyond diabetes.Drug Des. Devel. Ther.2023171907193210.2147/DDDT.S40937337397787
    [Google Scholar]
  20. AlroujiM. Al-kuraishyH.M. Al-GareebA.I. AshourN.A. JabirM.S. NegmW.A. BatihaG.E.S. Metformin role in Parkinson’s disease: A double-sword effect.Mol. Cell. Biochem.2024479497599110.1007/s11010‑023‑04771‑737266747
    [Google Scholar]
  21. DunneF. NewmanC. Alvarez-IglesiasA. FergusonJ. SmythA. BrowneM. O’SheaP. DevaneD. GillespieP. BogdanetD. KgosidialwaO. EganA. FinnY. GaffneyG. KhattakA. O’KeeffeD. LiewA. O’DonnellM. Early metformin in gestational diabetes: A randomized clinical trial.JAMA2023330161547155610.1001/jama.2023.1986937786390
    [Google Scholar]
  22. BaileyC.J. Metformin: Therapeutic profile in the treatment of type 2 diabetes.Diabetes Obes. Metab.202426Suppl. 331910.1111/dom.1566338784991
    [Google Scholar]
  23. NaseriA. SanaieS. HamzehzadehS. Seyedi-SahebariS. HosseiniM.S. Gholipour-khaliliE. Rezazadeh-GavganiE. MajidazarR. SerajiP. DaneshvarS. Rezazadeh-GavganiE. Metformin: New applications for an old drug.J. Basic Clin. Physiol. Pharmacol.202334215116010.1515/jbcpp‑2022‑025236474458
    [Google Scholar]
  24. NojimaI. WadaJ. Metformin and its immune-mediated effects in various diseases.Int. J. Mol. Sci.202324175510.3390/ijms2401075536614197
    [Google Scholar]
  25. DesaiS.A. MardiaR.B. SuhagiaB.N. DesaiH.T. Development and validation of stability-indicating HPTLC method for simultaneous estimation of Metformin, Saxagliptin, and Dapagliflozin in their combined matrix using AQbD.Bull. Env. Pharmacol. Life Sci.2022123242
    [Google Scholar]
  26. LiG. ZhangD. NiJ. WangS. Clinical efficacy of different doses of canagliflozin combined with metformin in the treatment of type 2 diabetes: Meta-analysis.Altern. Ther. Health Med.202329732833437499149
    [Google Scholar]
  27. TomlinsonB. LiY.H. Canagliflozin + metformin ER for the treatment of type 2 diabetes: The evidence to date.Expert Opin. Pharmacother.202324181937194710.1080/14656566.2023.227618037881952
    [Google Scholar]
  28. KhanN. Development and validation of stability-indicating RP-Hplc method for simultaneous determination of canagliflozin and metformin in fixed-dose combination.J. Res. Pharm.2023273
    [Google Scholar]
  29. KumarL. Quality-by-design driven analytical method (AQbD) development and validation of HPLC–UV technique to quantify rivastigmine hydrogen tartrate in lipidic nanocarriers: Forced degradation, and assessment of drug content and in vitro release studies.Microchem. J.202319310894410.1016/j.microc.2023.108944
    [Google Scholar]
  30. SusmithaA. RajithaG. EriG.K. A comprehensive review on QbD driven analytical procedures developed for the analysis of various drugs.J. Liq. Chromatogr. Relat. Technol.2023461-5123610.1080/10826076.2023.2204238
    [Google Scholar]
  31. SathuluriK. BakamR. JainR. DandeA. GajbhiyeR. RavichandiranV. PeramanR. Analytical quality by design (AQbD) in the ICHQ14 guidelines for analytical procedure development.Accredit. Qual. Assur.202414
    [Google Scholar]
  32. KumarM. PantA. ChopraS. BhatiaA. AQbD enabled method development and quantification of asiaticoside in foam-based formulations.Accredit. Qual. Assur.202416
    [Google Scholar]
  33. LakkaN.S. KuppanC. VadagamN. ReddamoniS.Y. MuthusamyC. Degradation pathways and impurity profiling of the anticancer drug apalutamide by HPLC and LC–MS/MS and separation of impurities using design of experiments.Biomed. Chromatogr.2023372e554910.1002/bmc.554936409057
    [Google Scholar]
  34. NagulanchaB.R. LakkaN.S. VandavasiK.R. Stability‐indicating method development and validation for quantitative estimation of assay and organic impurities of antiviral drug baloxavir marboxil in drug substance and pharmaceutical dosage form using HPLC and LC–MS methods.Biomed. Chromatogr.2023378e564410.1002/bmc.564437052118
    [Google Scholar]
  35. ChakrabortyS. MondalS. A green eco-friendly analytical method development, validation, and stress degradation studies of favipiravir in bulk and different tablet dosages form by UV-spectrophotometric and RP-HPLC methods with their comparison by using ANOVA and in-vitro dissolution studies.Int. J. Pharm. Investig.202313229030510.5530/ijpi.13.2.039
    [Google Scholar]
  36. PatilA. PardeshiS. KapaseM. PatilP. MoreM. DholeS. KoleE. DeshmukhP. GholapA. MujumdarA. NaikJ. Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach.Dry. Technol.202442466167310.1080/07373937.2023.2298778
    [Google Scholar]
  37. ShirsathN.R. GoswamiA.K. Design and development of solid dispersion of valsartan by a lyophilization technique: A 32 factorial design approach.Micro Nanosyst.20211319010210.2174/1876402912666200206155430
    [Google Scholar]
  38. AghaeiM. TalariF.S. MollahosseiniA. KeramatiM. Validation of a high-performance liquid chromatography method for determining lysophosphatidylcholine content in bovine pulmonary surfactant medication.Biomed. Chromatogr.2024388e592610.1002/bmc.592638881378
    [Google Scholar]
  39. CorreiaA.C. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery.Expert Opin. Drug Deliv.202320121731174810.1080/17425247.2023.227490237905547
    [Google Scholar]
  40. El-SayedH.M. AbdellatefH.E. HendawyH.A.M. El-AbassyO.M. IbrahimH. DoE-enhanced development and validation of eco-friendly RP-HPLC method for analysis of safinamide and its precursor impurity: QbD approach.Microchem. J.202319010873010.1016/j.microc.2023.108730
    [Google Scholar]
  41. KoliR. MannurV.S. GudasiS. SingadiR. NashipudiA. Development of directly compressible polyherbal tablets by using QbD approach a novel immunomodulatory material.J Med Pharm Allied Sci.2023111654765484
    [Google Scholar]
  42. PatraC.N. MishraA. JenaG.K. PanigrahiK.C. SrutiJ. GhoseD. SahooL. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance.J. Pharm. Innov.20231831279129710.1007/s12247‑023‑09714‑9
    [Google Scholar]
  43. RajmaneA.D. ShindeK.P. A review of HPLC method development and validation as per ICH guidelines.Asian J. Pharm. Anal.202313214315110.52711/2231‑5675.2023.00024
    [Google Scholar]
  44. WeinerA.M.J. IrijalbaI. GallegoM.P. IbarburuI. SainzL. Goñi-de-CerioF. QuevedoC. MurianaA. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline.Reprod. Toxicol.202412310851310.1016/j.reprotox.2023.10851338016617
    [Google Scholar]
  45. ZhuX. A linear validation method of analytical procedures based on the double logarithm function linear fitting.Anal. Chim. Acta2024131034269510.1016/j.aca.2024.34269538811139
    [Google Scholar]
  46. SaburovI.K. YunuskhodjayevaN.A. Validation of the analytical method for the determination of dexketoprofen tromethamine as a residual substance. Specificity, accuracy, linearity, repeatability, detection limit and quantitation limit of the method.Campanian Naturalist.202428115371543
    [Google Scholar]
  47. LuX. XieQ. PanX. ZhangR. ZhangX. PengG. ZhangY. ShenS. TongN. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy.Signal Transduct. Target. Ther.20249126210.1038/s41392‑024‑01951‑939353925
    [Google Scholar]
  48. SodikovS.S. EshimovZ. ErgashevN MuxammadiyevT Modern view in the treatment of patients with type 2 diabetes mellitus.Educ. Res. Univ. Sci.202434 SPECIAL156165
    [Google Scholar]
  49. TobeS.W. MavrakanasT.A. BajajH.S. LevinA. TangriN. SleeA. NeuenB.L. PerkovicV. MahaffeyK.W. RapattoniW. AngF.G. Impact of canagliflozin on kidney and cardiovascular outcomes by type 2 diabetes duration: A pooled analysis of the CANVAS program and CREDENCE trials.Diabetes Care202447350150710.2337/dc23‑145038252809
    [Google Scholar]
  50. AlbalawyW.N. YoumE.B. ShipmanK.E. TrullK.J. BatyC.J. LongK.R. RbaibiY. WangX.P. FagunloyeO.G. WhiteK.A. JurczakM.J. KashlanO.B. WeiszO.A. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake.Am. J. Physiol. Renal Physiol.20243266F1041F105310.1152/ajprenal.00005.202438660713
    [Google Scholar]
  51. ScottB. DayE.A. O’BrienK.L. ScanlanJ. CromwellG. ScannailA.N. McDonnellM.E. FinlayD.K. LynchL. Metformin and feeding increase levels of the appetite-suppressing metabolite Lac-Phe in humans.Nat. Metab.20246465165810.1038/s42255‑024‑01018‑738499765
    [Google Scholar]
  52. BairagiA. KothrukarR. ChikhaleH. KosanamS. BorseL. AQbD-novel strategy for analytical methods.Future J. Pharm. Sci.202410113810.1186/s43094‑024‑00706‑1
    [Google Scholar]
  53. MulukuriS.N. KumarS. DharaM. Dheeraj RajeshG. KumarP. Statistical modeling, optimization and characterization of andrographolide loaded emulgel for its therapeutic application on skin cancer through enhancing its skin permeability.Saudi Pharm. J.202432610206810.1016/j.jsps.2024.10206838699597
    [Google Scholar]
  54. MohamedM.A. Validated stability indicating chromatographic method for determination of baricitinib and its degradation products in their tablet dosage form: Implementation to content uniformity and in vitro dissolution studies.Annales Pharmaceutiques Françaises.Elsevier Masson2023267283
    [Google Scholar]
  55. SwarnkarP. GuptaM.K. MaheshwariM. Analytical method validation of compendial hplc method for pharmaceuticals as per recent usp and ich guidelines.202111110
    [Google Scholar]
  56. RaoN.V. ReddyK.J. BharathP. RamachandranD. Development and validation of a RP-HPLC method for the determination atropine and its impurities in pharmaceutical dosage form as per ICH guidelines.Curr. Trends Biotechnol. Pharm.2022163417428
    [Google Scholar]
  57. TiwariR. KumarA. SolankiP. DhobiM. SundaresanV. KalaiselvanV. RaghuvanshiR.S. Analytical quality-by-design (AQbD) guided development of a robust HPLC method for the quantification of plumbagin from Plumbago species.J. Liq. Chromatogr. Relat. Technol.20214411-1252953710.1080/10826076.2021.1973027
    [Google Scholar]
  58. Afonso UrichJ.A. MarkoV. BoehmK. Lara GarcíaR.A. JeremicD. PaudelA. Development and validation of a stability-indicating uplc method for the determination of hexoprenaline in injectable dosage form using AQbD principles.Molecules20212621659710.3390/molecules2621659734771005
    [Google Scholar]
  59. Kant ChaudharyM. MisraA. SrivastavaS. A multi-analyte HPTLC estimation of marker compounds in Pueraria tuberosa (Willd.) DC.: Application of AQbD approach for method optimization and greenness assessment.Microchem. J.202419910998810.1016/j.microc.2024.109988
    [Google Scholar]
  60. GhizzaniV. AscioneA. OrlandiniS. FurlanettoS. MassoliniG. LucianiF. Development of an optimised icIEF method for harmonising quality control of monoclonal antibodies by using an AQbD approach.34th International Symposium on Pharmaceutical and Biomedical Analysis-PBA2024138139
    [Google Scholar]
  61. HamdacheA. GribL. GribC. AdourL. ZatoutH. MezrouaiA. SaraouiS. Forced degradation studies of sofosbuvir with a developed and validated RP-HPLC method as per ICH guidelines.Chromatographia202184121131114010.1007/s10337‑021‑04099‑8
    [Google Scholar]
  62. WadieM. Abdel-MoetyE.M. RezkM.R. MarzoukH.M. A novel eco-friendly HPLC method with dual detection modes for versatile quantification of dutasteride and silodosin in pharmaceutical formulation, dissolution testing and spiked human plasma.Microchem. J.202419710975310.1016/j.microc.2023.109753
    [Google Scholar]
  63. ZhangC. BuQ. LiC. LuP. LiuC. HuangB. Simultaneous determination of abrine, hypaphorine, schaftoside and soyasaponin Bb in rat plasma by UPLC–MS/MS and its application to a pharmacokinetic study after oral administration of Abrus cantoniensis Hance extract.Biomed. Chromatogr.20233710e569610.1002/bmc.569637357379
    [Google Scholar]
  64. SureshA. BalakrishnanA. RamaswamyV. NatesanS. Analytical method development and validation for simultaneous estimation of Bempedoic acid and Ezetimibe in pure and its pharmaceutical dosage form by RP‐HPLC.Biomed. Chromatogr.2024389e593810.1002/bmc.593838922950
    [Google Scholar]
  65. MahmoudiA. De FranciaS. PaulP. Development and validation of high‐performance liquid chromatography method for determination of clarithromycin in pharmaceutical tablets.J. Sep. Sci.20234621230042410.1002/jssc.20230042437650313
    [Google Scholar]
  66. FawzyM.G. SaidM.A. Valuation of environmental influence of recently invented high-performance liquid chromatographic method for hypoglycemic mixtures of gliflozins and metformin in the presence of melamine impurities: Application of molecular modeling simulation approach.J. Sep. Sci.20234619230026710.1002/jssc.20230026737485588
    [Google Scholar]
  67. SherM. BashirS. FatimaA. QaisarM.N. Naeem-ul-HassanM. Simultaneous determination of metformin and glibenclamide by RP-HPLC in orodispersible tablets and their pharmacokinetic evaluation.Authorea Preprints202310.22541/au.168287817.70016512/v1
    [Google Scholar]
  68. SantanaI.M. RostagnoM.A. BreitkreitzM.C. Analytical quality-by-design (AQbD) approach for comprehensive analysis of bioactive compounds from Citrus peel wastes by UPLC.Anal. Bioanal. Chem.2023415184411442210.1007/s00216‑023‑04588‑936853412
    [Google Scholar]
  69. ShirsathN.R. GoswamiA.K. Vildagliptin-loaded gellan gum mucoadhesive beads for sustained drug delivery: Design, optimisation and evaluation.Mater. Technol.2021361164765910.1080/10667857.2020.1786783
    [Google Scholar]
  70. Kisan ChatkiP. Mohan MirasheM. WarokarA.S. Box-Behnken design in optimization of the green liquid chromatographic method for the quantification of Afatinib in drug product: AQbD approach.J. Liq. Chromatogr. Relat. Technol.20244716-20349359
    [Google Scholar]
  71. PerumalD.D. KrishnanM. LakshmiK.S. Eco-friendly based stability-indicating RP-HPLC technique for the determination of escitalopram and etizolam by employing QbD approach.Green Chem. Lett. Rev.202215367168210.1080/17518253.2022.2127334
    [Google Scholar]
  72. VasquezM. Castro-LunaA. Ramos-CevallosN.J. Ramos-PerfectoD. Alcarraz-CuriM. Segura-VasquezJ. Cáceres-AntaurcoD. Analytical quality by design (AQbD) of the TLCScanner method for the determination of radiochemical purity of the radiopharmaceutical sodium iodide 131I oral solution.Molecules2024291883
    [Google Scholar]
  73. PeramanR. BandiJ. KondreddyV.K. KalvaB. KothakotaS.G. ParitalaJ. NagappanK. YirgamreddyP.R. Analytical quality by design approach versus conventional approach: Development of HPLC-DAD method for simultaneous determination of etizolam and propranolol hydrochloride.J. Liq. Chromatogr. Relat. Technol.2021443-419720910.1080/10826076.2021.1874982
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128365462250312061951
Loading
/content/journals/dmbl/10.2174/0118723128365462250312061951
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 32 approach; ANOVA; Canagliflozin; HPLC; HPLC method; metformin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test