Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Introduction/Objective

Glucuronidation and sulfonation enzymes conjugate compounds containing a hydroxyl group, while paraoxonase enzymes hydrolyze lactone-containing compounds. 3-Hydroxy-6H,7H-chromeno [3,4-c]chromene-6,7-dione (3-hydroxy-V-coumarin) contains both a hydroxyl substituent and two lactone substructures and is strongly fluorescent. This study evaluates glucuronidation, sulfonation and hydrolysis of 3-hydroxy-V-coumarin reactions, which abolish its fluorescence.

Methods

Glucuronide, sulfate, and hydrolyzed product formation were confirmed using accurate LC-MS. Fluorescence-based multi-well plate assays were established to determine rates of glucuronidation, sulfonation and hydrolysis of 3-hydroxy-V-coumarin.

Results

A decrease in fluorescence correlated with the formation of conjugation or hydrolyzed metabolites of the reactions was observed. 3-Hydroxy-V-coumarin was glucuronidated by human UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A9, 1A10, 2A1, 2B4 and 2B7 and by dog UGT1A1, 1A2 and 1A11, and sulfonated by human SULT1A1, 1A2 and 1E1. The results indicated that paraoxonase 2 hydrolyzed lactone of 3-hydroxy-V-coumarin. 3-Hydroxy-V-coumarin interacted a hydrogen bond with serine 221 and hydrophobic interaction with phenyls 71 and 291 of paraoxonase 2. The hydrolysis rate of 3-hydroxy-V-coumarin was determined in ten rat tissues. In human liver cytosol, the hydrolysis was slower than in rat, mouse, dog, pig, rabbit, and sheep liver cytosol.

Conclusion

3-hydroxy-V-coumarin is a new model substrate for studying glucuronidation, sulfonation and lactone hydrolysis reactions.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128351379250312063255
2025-04-25
2025-11-17
Loading full text...

Full text loading...

References

  1. MeekM.E. BoobisA.R. CroftonK.M. HeinemeyerG. RaaijM.V. VickersC. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework.Regul. Toxicol. Pharmacol.2011602S1S1410.1016/j.yrtph.2011.03.01021466831
    [Google Scholar]
  2. GonzalezF.J. CoughtrieM. TukeyR.H. Drug metabolism.Goodman & Gilmans’s the Pharmacological Basis of Therapeutics13th ed BruntonL.L. Hilal-DandanR. KnollmanB.C. McGraw-Hill: New York201885100
    [Google Scholar]
  3. ParkinsonA. OgilvieB.W. BuckleyD.B. KazmiF. ParkinsonO. Biotransformation of xenobiotics.Casarett & Doull’s Toxicology: The Basic Science of Poisons.9th ed KlaassenC.D. New YorkMcGraw-Hill2018193430
    [Google Scholar]
  4. TestaB. PedrettiA. VistoliG. Reactions and enzymes in the metabolism of drugs and other xenobiotics.Drug Discov. Today20121711-1254956010.1016/j.drudis.2012.01.01722305937
    [Google Scholar]
  5. GuengerichF.P. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future.Adv. Pharmacol.20229514710.1016/bs.apha.2021.12.00135953152
    [Google Scholar]
  6. DraganovD.I. TeiberJ.F. SpeelmanA. OsawaY. SunaharaR. DuL.B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities.J. Lipid Res.20054661239124710.1194/jlr.M400511‑JLR20015772423
    [Google Scholar]
  7. ParweenF. GuptaR.D. Insights into the role of paraoxonase 2 in human pathophysiology.J. Biosci.2022471410.1007/s12038‑021‑00234‑735092416
    [Google Scholar]
  8. FurlongC.E. MarsillachJ. JarvikG.P. CostaL.G. Paraoxonases-1, -2 and -3: What are their functions?Chem Biol Interact2016259Pt B516210.1016/j.cbi.2016.05.036
    [Google Scholar]
  9. MinersJ.O. RowlandA. NovakJ.J. LaphamK. GoosenT.C. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping.Pharmacol. Ther.202121810768910.1016/j.pharmthera.2020.10768932980440
    [Google Scholar]
  10. CoughtrieM.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family.Chem Biol Interact2016259Pt A2710.1016/j.cbi.2016.05.005
    [Google Scholar]
  11. PaulP. SuwanJ. LiuJ. DordickJ.S. LinhardtR.J. Recent advances in sulfotransferase enzyme activity assays.Anal. Bioanal. Chem.201240361491150010.1007/s00216‑012‑5944‑422526635
    [Google Scholar]
  12. RahikainenT. HäkkinenM.R. FinelM. PasanenM. JuvonenR.O. A high throughput assay for the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin by recombinant human UDP-glucuronosyltransferases and liver microsomes.Xenobiotica2013431085386110.3109/00498254.2013.78372423551063
    [Google Scholar]
  13. JuvonenR.O. RauhamäkiS. KortetS. NiinivehmasS. TrobergJ. PetsaloA. HuuskonenJ. RaunioH. FinelM. PentikäinenO.T. Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10.Mol. Pharm.201815392393310.1021/acs.molpharmaceut.7b0087129421866
    [Google Scholar]
  14. JuvonenR.O. PentikäinenO. HuuskonenJ. TimonenJ. KärkkäinenO. HeikkinenA. FasheM. RaunioH. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species.Xenobiotica202050888589310.1080/00498254.2020.171154431903849
    [Google Scholar]
  15. ZhouQ.H. LvX. TianZ.H. FinelM. FengL. HuoP.C. ZhuY.D. LuY. HouJ. GeG.B. A fluorescence-based microplate assay for high-throughput screening and evaluation of human UGT inhibitors.Anal. Chim. Acta2021115333830510.1016/j.aca.2021.33830533714444
    [Google Scholar]
  16. DiL. Reaction phenotyping to assess victim drug-drug interaction risks.Expert Opin. Drug Discov.201712111105111510.1080/17460441.2017.136728028820269
    [Google Scholar]
  17. RaunioH. KuusistoM. JuvonenR.O. PentikäinenO.T. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes.Front. Pharmacol.2015612310.3389/fphar.2015.0012326124721
    [Google Scholar]
  18. ZientekM.A. YoudimK. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes.Drug Metab. Dispos.201543116318110.1124/dmd.114.05875025297949
    [Google Scholar]
  19. JiangX. ShangguanM. LuZ. YiS. ZengX. ZhangY. HouL.A. “turn-on” fluorescent probe based on V-shaped bis-coumarin for detection of hydrazine.Tetrahedron202076713092110.1016/j.tet.2020.130921
    [Google Scholar]
  20. TasiorM. PoronikY.M. VakuliukO. SadowskiB. KarczewskiM. GrykoD.T. V-shaped bis-coumarins: Synthesis and optical properties.J. Org. Chem.201479188723873210.1021/jo501565r25133521
    [Google Scholar]
  21. RaunioH. PentikäinenO. JuvonenR.O. Coumarin-based profluorescent and fluorescent substrates for determining xenobiotic-metabolizing enzyme activities in vitro.Int. J. Mol. Sci.20202113470810.3390/ijms2113470832630278
    [Google Scholar]
  22. KurkelaM. García-HorsmanJ.A. LuukkanenL. MörskyS. TaskinenJ. BaumannM. KostiainenR. HirvonenJ. FinelM. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme.J. Biol. Chem.200327863536354410.1074/jbc.M20613620012435745
    [Google Scholar]
  23. KuuranneT. KurkelaM. ThevisM. SchänzerW. FinelM. KostiainenR. Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases.Drug Metab. Dispos.20033191117112410.1124/dmd.31.9.111712920167
    [Google Scholar]
  24. SneitzN. CourtM.H. ZhangX. LaajanenK. YeeK.K. DaltonP. DingX. FinelM. Human UDP-glucuronosyltransferase UGT2A2: cDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3.Pharmacogenet. Genomics2009191292393410.1097/FPC.0b013e328333076719858781
    [Google Scholar]
  25. KurkelaM. PatanaA.S. MackenzieP.I. CourtM.H. TateC.G. HirvonenJ. GoldmanA. FinelM. Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6.Pharmacogenet. Genomics200717211512610.1097/FPC.0b013e328011b59817301691
    [Google Scholar]
  26. HeikkinenA.T. FriedleinA. MatondoM. HatleyO.J.D. PetsaloA. JuvonenR. GaletinA. Rostami-HodjeganA. AebersoldR. LamerzJ. DunkleyT. CutlerP. ParrottN. Quantitative ADME proteomics - CYP and UGT enzymes in the Beagle dog liver and intestine.Pharm. Res.2015321749010.1007/s11095‑014‑1446‑825033762
    [Google Scholar]
  27. JalkanenA. LassheikkiV. TorstiT. GharibE. LehtonenM. JuvonenR.O. Tissue and interspecies comparison of catechol-O-methyltransferase mediated catalysis of 6-O-methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone.Xenobiotica202151326827810.1080/00498254.2020.185385033289420
    [Google Scholar]
  28. LuC. WuC. GhoreishiD. ChenW. WangL. DammW. RossG.A. DahlgrenM.K. RussellE. Von BargenC.D. AbelR. FriesnerR.A. HarderE.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c0030234096718
    [Google Scholar]
  29. BowersK.J. ChowE. XuH. DrorR.O. EastfooM.P. GregersenB.A. KlepeinsJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE Conference on Supercomputing200610.1109/SC.2006.54
    [Google Scholar]
  30. SartoriS.K. DiazM.A.N. Diaz-MuñozG. Lactones: Classification, synthesis, biological activities, and industrial applications.Tetrahedron20218413200110.1016/j.tet.2021.132001
    [Google Scholar]
  31. CampsJ. IftimieS. ArenasM. CastañéH. Jiménez-FrancoA. CastroA. JovenJ. Paraoxonase-1: How a xenobiotic detoxifying enzyme has become an actor in the pathophysiology of infectious diseases and cancer.Chem. Biol. Interact.202338011055310.1016/j.cbi.2023.11055337201624
    [Google Scholar]
  32. DurringtonP.N. BashirB. SoranH. Paraoxonase 1 and atherosclerosis.Front. Cardiovasc. Med.202310106596710.3389/fcvm.2023.106596736873390
    [Google Scholar]
  33. Medina-DíazI.M. Ponce-RuízN. Rojas-GarcíaA.E. Zambrano-ZargozaJ.F. Bernal-HernándezY.Y. González-AriasC.A. Barrón-VivancoB.S. Herrera-MorenoJ.F. The relationship between cancer and Paraoxonase 1.Antioxidants202211469710.3390/antiox1104069735453382
    [Google Scholar]
  34. CampagnaR. PozziV. GiorginiS. MorichettiD. GoteriG. SartiniD. SerritelliE.N. EmanuelliM. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance.Hum. Cell20233631108111910.1007/s13577‑023‑00892‑936897549
    [Google Scholar]
  35. GonzalvoM.C. GilF. HernandezA.F. RodrigoL. VillanuevaE. PlaA. Human liver paraoxonase (PON1): Subcellular distribution and characterization.J. Biochem. Mol. Toxicol.1998121616910.1002/(SICI)1099‑0461(1998)12:1<61::AID‑JBT8>3.0.CO;2‑N9414488
    [Google Scholar]
  36. CavalleroA. PucciniP. AprileV. LucchiM. GervasiP.G. LongoV. GabrieleM. Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues.Life Sci2022311Pt A12114710.1016/j.lfs.2022.121147
    [Google Scholar]
  37. RudakovaE.V. BoltnevaN.P. MakhaevaG.F. Comparative analysis of esterase activities of human, mouse, and rat blood.Bull. Exp. Biol. Med.20111521737510.1007/s10517‑011‑1457‑y
    [Google Scholar]
  38. BaharF.G. OhuraK. OgiharaT. ImaiT. Species difference of esterase expression and hydrolase activity in plasma.J. Pharm. Sci.2012101103979398810.1002/jps.2325822833171
    [Google Scholar]
  39. Taler-VerčičA. GoličnikM. BavecA. The structure and function of Paraoxonase-1 and its comparison to Paraoxonase-2 and -3.Molecules20202524598010.3390/molecules2524598033348669
    [Google Scholar]
  40. MohammedC.J. LamichhaneS. ConnollyJ.A. SoehnlenS.M. KhalafF.K. MalhotraD. HallerS.T. IsailovicD. KennedyD.J. A PON for all seasons: Comparing Paraoxonase enzyme substrates, activity and action including the role of PON3 in health and disease.Antioxidants202211359010.3390/antiox1103059035326240
    [Google Scholar]
  41. KuoC.L. La DuB.N. Comparison of purified human and rabbit serum paraoxonases.Drug Metab. Dispos.19952399359448565784
    [Google Scholar]
  42. MacknessB. Beltran-DebonR. AragonesG. JovenJ. CampsJ. MacknessM. Human tissue distribution of paraoxonases 1 and 2 mRNA.IUBMB Life201062648048210.1002/iub.34720503442
    [Google Scholar]
  43. GravesT.L. ScottJ.E. A high throughput serum paraoxonase assay for discovery of small molecule modulators of PON1 activity.Curr. Chem. Genomics20082516110.2174/187539730080201005120161844
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128351379250312063255
Loading
/content/journals/dmbl/10.2174/0118723128351379250312063255
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): fluorescence; glucuronidation; Hydrolysis; lactone; paraoxonase; sulfonation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test