Skip to content
2000
image of `3-Hydroxy-6H,7H-chromeno [3,4-c]chromene-6,7-dione as a Substrate for Studying Glucuronidation, Sulfonation and Lactone Hydrolysis

Abstract

Introduction/Objective

Glucuronidation and sulfonation enzymes conjugate compounds containing a hydroxyl group, while paraoxonase enzymes hydrolyze lactone-containing compounds. 3-Hydroxy-6H,7H-chromeno [3,4-c]chromene-6,7-dione (3-hydroxy-V-coumarin) contains both a hydroxyl substituent and two lactone substructures and is strongly fluorescent. This study evaluates glucuronidation, sulfonation and hydrolysis of 3-hydroxy-V-coumarin reactions, which abolish its fluorescence.

Methods

Glucuronide, sulfate, and hydrolyzed product formation were confirmed using accurate LC-MS. Fluorescence-based multi-well plate assays were established to determine rates of glucuronidation, sulfonation and hydrolysis of 3-hydroxy-V-coumarin.

Results

A decrease in fluorescence correlated with the formation of conjugation or hydrolyzed metabolites of the reactions was observed. 3-Hydroxy-V-coumarin was glucuronidated by human UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A9, 1A10, 2A1, 2B4 and 2B7 and by dog UGT1A1, 1A2 and 1A11, and sulfonated by human SULT1A1, 1A2 and 1E1. The results indicated that paraoxonase 2 hydrolyzed lactone of 3-hydroxy-V-coumarin. 3-Hydroxy-V-coumarin interacted a hydrogen bond with serine 221 and hydrophobic interaction with phenyls 71 and 291 of paraoxonase 2. The hydrolysis rate of 3-hydroxy-V-coumarin was determined in ten rat tissues. In human liver cytosol, the hydrolysis was slower than in rat, mouse, dog, pig, rabbit, and sheep liver cytosol.

Conclusion

3-hydroxy-V-coumarin is a new model substrate for studying glucuronidation, sulfonation and lactone hydrolysis reactions

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128351379250312063255
2025-04-25
2025-08-17
Loading full text...

Full text loading...

References

  1. Meek M.E. Boobis A.R. Crofton K.M. Heinemeyer G. Raaij M.V. Vickers C. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regul. Toxicol. Pharmacol. 2011 60 2 S1 S14 10.1016/j.yrtph.2011.03.010 21466831
    [Google Scholar]
  2. Gonzalez F.J. Coughtrie M. Tukey R.H. Brunton L.L. Hilal-Dandan R. Knollman B.C. Drug metabolism. Goodman & Gilmans’s the Pharmacological Basis of Therapeutics. McGraw-Hill New York 13th ed 2018 85 100
    [Google Scholar]
  3. Parkinson A. Ogilvie B.W. Buckley D.B. Kazmi F. Parkinson O. Klaassen C.D. Biotransformation of xenobiotics. Casarett & Doull’s Toxicology: The Basic Science of Poisons. McGraw-Hill New York 9th ed 2018 193 430
    [Google Scholar]
  4. Testa B. Pedretti A. Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today 2012 17 11-12 549 560 10.1016/j.drudis.2012.01.017 22305937
    [Google Scholar]
  5. Guengerich F.P. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. Adv. Pharmacol. 2022 95 1 47 10.1016/bs.apha.2021.12.001 35953152
    [Google Scholar]
  6. Draganov D.I. Teiber J.F. Speelman A. Osawa Y. Sunahara R. La Du B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 2005 46 6 1239 1247 10.1194/jlr.M400511‑JLR200 15772423
    [Google Scholar]
  7. Parween F. Gupta R.D. Insights into the role of paraoxonase 2 in human pathophysiology. J. Biosci. 2022 47 1 4 10.1007/s12038‑021‑00234‑7 35092416
    [Google Scholar]
  8. Furlong CE Marsillach J Jarvik GP Costa LG Paraoxonases-1, -2 and -3: What are their functions? Chem Biol Interact 2016 259 Pt B 51 62 10.1016/j.cbi.2016.05.036
    [Google Scholar]
  9. Miners J.O. Rowland A. Novak J.J. Lapham K. Goosen T.C. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol. Ther. 2021 218 107689 10.1016/j.pharmthera.2020.107689 32980440
    [Google Scholar]
  10. Coughtrie MWH Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact 2016 259 Pt A 2 7 10.1016/j.cbi.2016.05.005
    [Google Scholar]
  11. Paul P. Suwan J. Liu J. Dordick J.S. Linhardt R.J. Recent advances in sulfotransferase enzyme activity assays. Anal. Bioanal. Chem. 2012 403 6 1491 1500 10.1007/s00216‑012‑5944‑4 22526635
    [Google Scholar]
  12. Rahikainen T. Häkkinen M.R. Finel M. Pasanen M. Juvonen R.O. A high throughput assay for the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin by recombinant human UDP-glucuronosyltransferases and liver microsomes. Xenobiotica 2013 43 10 853 861 10.3109/00498254.2013.783724 23551063
    [Google Scholar]
  13. Juvonen R.O. Rauhamäki S. Kortet S. Niinivehmas S. Troberg J. Petsalo A. Huuskonen J. Raunio H. Finel M. Pentikäinen O.T. Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10. Mol. Pharm. 2018 15 3 923 933 10.1021/acs.molpharmaceut.7b00871 29421866
    [Google Scholar]
  14. Juvonen R.O. Pentikäinen O. Huuskonen J. Timonen J. Kärkkäinen O. Heikkinen A. Fashe M. Raunio H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020 50 8 885 893 10.1080/00498254.2020.1711544 31903849
    [Google Scholar]
  15. Zhou Q.H. Lv X. Tian Z.H. Finel M. Feng L. Huo P.C. Zhu Y.D. Lu Y. Hou J. Ge G.B. A fluorescence-based microplate assay for high-throughput screening and evaluation of human UGT inhibitors. Anal. Chim. Acta 2021 1153 338305 10.1016/j.aca.2021.338305 33714444
    [Google Scholar]
  16. Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin. Drug Discov. 2017 12 11 1105 1115 10.1080/17460441.2017.1367280 28820269
    [Google Scholar]
  17. Raunio H. Kuusisto M. Juvonen R.O. Pentikäinen O.T. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes. Front. Pharmacol. 2015 6 123 10.3389/fphar.2015.00123 26124721
    [Google Scholar]
  18. Zientek M.A. Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab. Dispos. 2015 43 1 163 181 10.1124/dmd.114.058750 25297949
    [Google Scholar]
  19. Jiang X. Shangguan M. Lu Z. Yi S. Zeng X. Zhang Y. Hou L. A “turn-on” fluorescent probe based on V-shaped bis-coumarin for detection of hydrazine. Tetrahedron 2020 76 7 130921 10.1016/j.tet.2020.130921
    [Google Scholar]
  20. Tasior M. Poronik Y.M. Vakuliuk O. Sadowski B. Karczewski M. Gryko D.T. V-shaped bis-coumarins: Synthesis and optical properties. J. Org. Chem. 2014 79 18 8723 8732 10.1021/jo501565r 25133521
    [Google Scholar]
  21. Raunio H. Pentikäinen O. Juvonen R.O. Coumarin-based profluorescent and fluorescent substrates for determining xenobiotic-metabolizing enzyme activities in vitro. Int. J. Mol. Sci. 2020 21 13 4708 10.3390/ijms21134708 32630278
    [Google Scholar]
  22. Kurkela M. García-Horsman J.A. Luukkanen L. Mörsky S. Taskinen J. Baumann M. Kostiainen R. Hirvonen J. Finel M. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme. J. Biol. Chem. 2003 278 6 3536 3544 10.1074/jbc.M206136200 12435745
    [Google Scholar]
  23. Kuuranne T. Kurkela M. Thevis M. Schänzer W. Finel M. Kostiainen R. Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. 2003 31 9 1117 1124 10.1124/dmd.31.9.1117 12920167
    [Google Scholar]
  24. Sneitz N. Court M.H. Zhang X. Laajanen K. Yee K.K. Dalton P. Ding X. Finel M. Human UDP-glucuronosyltransferase UGT2A2: cDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3. Pharmacogenet. Genomics 2009 19 12 923 934 10.1097/FPC.0b013e3283330767 19858781
    [Google Scholar]
  25. Kurkela M. Patana A.S. Mackenzie P.I. Court M.H. Tate C.G. Hirvonen J. Goldman A. Finel M. Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6. Pharmacogenet. Genomics 2007 17 2 115 126 10.1097/FPC.0b013e328011b598 17301691
    [Google Scholar]
  26. Heikkinen A.T. Friedlein A. Matondo M. Hatley O.J.D. Petsalo A. Juvonen R. Galetin A. Rostami-Hodjegan A. Aebersold R. Lamerz J. Dunkley T. Cutler P. Parrott N. Quantitative ADME proteomics - CYP and UGT enzymes in the Beagle dog liver and intestine. Pharm. Res. 2015 32 1 74 90 10.1007/s11095‑014‑1446‑8 25033762
    [Google Scholar]
  27. Jalkanen A. Lassheikki V. Torsti T. Gharib E. Lehtonen M. Juvonen R.O. Tissue and interspecies comparison of catechol-O-methyltransferase mediated catalysis of 6-O-methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone. Xenobiotica 2021 51 3 268 278 10.1080/00498254.2020.1853850 33289420
    [Google Scholar]
  28. Lu C. Wu C. Ghoreishi D. Chen W. Wang L. Damm W. Ross G.A. Dahlgren M.K. Russell E. Von Bargen C.D. Abel R. Friesner R.A. Harder E.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021 17 7 4291 4300 10.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  29. Bowers K.J. Chow E. Xu H. Dror R.O. Eastfoo M.P. Gregersen B.A. Klepeins J.L. Kolossvary I. Moraes M.A. Sacerdoti F.D. Salmon J.K. Shan Y. Shaw D.E. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 2006 ACM New York, NY, USA 10.1109/SC.2006.54
    [Google Scholar]
  30. Sartori S.K. Diaz M.A.N. Diaz-Muñoz G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 2021 84 132001 10.1016/j.tet.2021.132001
    [Google Scholar]
  31. Camps J. Iftimie S. Arenas M. Castañé H. Jiménez-Franco A. Castro A. Joven J. Paraoxonase-1: How a xenobiotic detoxifying enzyme has become an actor in the pathophysiology of infectious diseases and cancer. Chem. Biol. Interact. 2023 380 110553 10.1016/j.cbi.2023.110553 37201624
    [Google Scholar]
  32. Durrington P.N. Bashir B. Soran H. Paraoxonase 1 and atherosclerosis. Front. Cardiovasc. Med. 2023 10 1065967 10.3389/fcvm.2023.1065967 36873390
    [Google Scholar]
  33. Medina-Díaz I.M. Ponce-Ruíz N. Rojas-García A.E. Zambrano-Zargoza J.F. Bernal-Hernández Y.Y. González-Arias C.A. Barrón-Vivanco B.S. Herrera-Moreno J.F. The relationship between cancer and Paraoxonase 1. Antioxidants 2022 11 4 697 10.3390/antiox11040697 35453382
    [Google Scholar]
  34. Campagna R. Pozzi V. Giorgini S. Morichetti D. Goteri G. Sartini D. Serritelli E.N. Emanuelli M. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Hum. Cell 2023 36 3 1108 1119 10.1007/s13577‑023‑00892‑9 36897549
    [Google Scholar]
  35. Gonzalvo M.C. Gil F. Hernandez A.F. Rodrigo L. Villanueva E. Pla A. Human liver paraoxonase (PON1): Subcellular distribution and characterization. J. Biochem. Mol. Toxicol. 1998 12 1 61 69 10.1002/(SICI)1099‑0461(1998)12:1<61::AID‑JBT8>3.0.CO;2‑N 9414488
    [Google Scholar]
  36. Cavallero A Puccini P Aprile V Lucchi M Gervasi PG Longo V Gabriele M Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues. Life Sci 2022 311 Pt A 121147 10.1016/j.lfs.2022.121147
    [Google Scholar]
  37. Rudakova EV Boltneva NP Makhaeva GF Comparative analysis of esterase activities of human, mouse, and rat blood. Bull Exp Biol Med 2011 152 1 73 75 10.1007/s10517‑011‑1457‑y
    [Google Scholar]
  38. Bahar F.G. Ohura K. Ogihara T. Imai T. Species difference of esterase expression and hydrolase activity in plasma. J. Pharm. Sci. 2012 101 10 3979 3988 10.1002/jps.23258 22833171
    [Google Scholar]
  39. Taler-Verčič A. Goličnik M. Bavec A. The structure and function of Paraoxonase-1 and its comparison to Paraoxonase-2 and -3. Molecules 2020 25 24 5980 10.3390/molecules25245980 33348669
    [Google Scholar]
  40. Mohammed C.J. Lamichhane S. Connolly J.A. Soehnlen S.M. Khalaf F.K. Malhotra D. Haller S.T. Isailovic D. Kennedy D.J. A PON for all seasons: Comparing Paraoxonase enzyme substrates, activity and action including the role of PON3 in health and disease. Antioxidants 2022 11 3 590 10.3390/antiox11030590 35326240
    [Google Scholar]
  41. Kuo C.L. La Du B.N. Comparison of purified human and rabbit serum paraoxonases. Drug Metab. Dispos. 1995 23 9 935 944 8565784
    [Google Scholar]
  42. Mackness B. Beltran-Debon R. Aragones G. Joven J. Camps J. Mackness M. Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life 2010 62 6 480 482 10.1002/iub.347 20503442
    [Google Scholar]
  43. Graves T.L. Scott J.E. A high throughput serum paraoxonase assay for discovery of small molecule modulators of PON1 activity. Curr. Chem. Genomics 2008 2 51 61 10.2174/1875397300802010051 20161844
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128351379250312063255
Loading
/content/journals/dmbl/10.2174/0118723128351379250312063255
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: sulfonation ; paraoxonase ; Hydrolysis ; lactone ; fluorescence ; glucuronidation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test