Skip to content
2000
image of Extracellular Vesicles: Innovative Nanotheranostic Platforms for Precision Drug Delivery

Abstract

Recent years have witnessed an enormous spike in interest in cell-derived particles (CDPs) that are also called Extracellular vesicles (EVs) due to their potential uses in both treatments and diagnostics. Small vesicles or particles, including apoptotic bodies, microvesicles, and exosomes, are released from both healthy and sick cells. They carry bioactive substances from their parent cells and transfer this cargo to target cells making them potential candidates for therapeutic interventions and diagnostic applications. These phospholipid-enclosed nanovesicles have multiple benefits over other carriers of biological materials, including high biocompatibility, high circulation stability, core propensity to target cells, low immunogenicity, ability to shield payload from degradation and biological barrier-crossing properties that make them unique. Cell-derived particles are used for evaluating treatment efficacy in addition to treating diseases by tracking changes in the payload composition of extracellular vesicles over time as real-time monitoring, thus treatment plans can be improved and patient outcomes can be forecast. Moreover, extracellular vesicles have gained attention as possible biomarkers because of their capacity to hold and transport biomolecules, and many biomarkers which might provide important details about cellular functions and the onset of illness. Cell-derived particles reflect the condition of the parent cell, making them an excellent source of biomarkers for a variety of illnesses. They can reveal information about the existence and course of illnesses and serve as a noninvasive substitute for conventional tissue biopsies. This review highlights the potential of Extracellular vesicles (EVs) as drug delivery carriers and as novel non-invasive molecular diagnostic tools for the prognosis of fatal illnesses. This article reveals the fundamental characteristics of EVs, the types of EVs, characteristics of EVs as biomarkers. Further, challenges in the isolation and characterization of extracellular vesicles, and applications of extracellular vesicles in drug delivery, are also succinctly summarized in this review article.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031368788250708153633
2025-07-14
2025-10-31
Loading full text...

Full text loading...

References

  1. Ciferri M.C. Quarto R. Tasso R. Extracellular vesicles as biomarkers and therapeutic tools: From pre-clinical to clinical applications. Biology 2021 10 5 359 10.3390/biology10050359 33922446
    [Google Scholar]
  2. Chung I.M. Rajakumar G. Venkidasamy B. Subramanian U. Thiruvengadam M. Exosomes: Current use and future applications. Clin. Chim. Acta 2020 500 226 232 10.1016/j.cca.2019.10.022 31678573
    [Google Scholar]
  3. Palazzolo S. Canzonieri V. Rizzolio F. The history of small extracellular vesicles and their implication in cancer drug resistance. Front. Oncol. 2022 12 948843 10.3389/fonc.2022.948843 36091133
    [Google Scholar]
  4. Han Q.F. Li W.J. Hu K.S. Gao J. Zhai W.L. Yang J.H. Zhang S.J. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 2022 21 1 207 10.1186/s12943‑022‑01671‑0 36320056
    [Google Scholar]
  5. Ståhl A. Johansson K. Mossberg M. Kahn R. Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol. 2019 34 1 11 30 10.1007/s00467‑017‑3816‑z 29181712
    [Google Scholar]
  6. Zhao Y. Li X. Zhang W. Yu L. Wang Y. Deng Z. Liu M. Mo S. Wang R. Zhao J. Liu S. Hao Y. Wang X. Ji T. Zhang L. Wang C. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm. Sin. B 2021 11 8 2114 2135 10.1016/j.apsb.2021.03.012 34522580
    [Google Scholar]
  7. Liu W. Bai X. Zhang A. Huang J. Xu S. Zhang J. Role of exosomes in central nervous system diseases. Front. Mol. Neurosci. 2019 12 240 10.3389/fnmol.2019.00240 31636538
    [Google Scholar]
  8. Soltész B. Buglyó G. Németh N. Szilágyi M. Pös O. Szemes T. Balogh I. Nagy B. The role of exosomes in cancer progression. Int. J. Mol. Sci. 2021 23 1 8 10.3390/ijms23010008 35008434
    [Google Scholar]
  9. He A. Wang M. Li X. Chen H. Lim K. Lu L. Zhang C. Role of exosomes in the pathogenesis and theranostic of Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci. 2023 24 13 11054 10.3390/ijms241311054 37446231
    [Google Scholar]
  10. Howitt J. Hill A.F. Exosomes in the pathology of neurodegenerative diseases. J. Biol. Chem. 2016 291 52 26589 26597 10.1074/jbc.R116.757955 27852825
    [Google Scholar]
  11. Jadli A.S. Parasor A. Gomes K.P. Shandilya R. Patel V.B. Exosomes in cardiovascular diseases: Pathological potential of nano-messenger. Front. Cardiovasc. Med. 2021 8 767488 10.3389/fcvm.2021.767488 34869682
    [Google Scholar]
  12. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  13. Clancy J.W. Schmidtmann M. D’Souza-Schorey C. The ins and outs of microvesicles. FASEB Bioadv. 2021 3 6 399 406 10.1096/fba.2020‑00127 34124595
    [Google Scholar]
  14. Zhou B. Xu K. Zheng X. Chen T. Wang J. Song Y. Shao Y. Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target. Ther. 2020 5 1 144 10.1038/s41392‑020‑00258‑9 32747657
    [Google Scholar]
  15. Nawaz M. Shah N. Zanetti B.R. Maugeri M. Silvestre R.N. Fatima F. Neder L. Valadi H. Extracellular vesicles and matrix remodeling enzymes: The emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 2018 7 10 167 10.3390/cells7100167 30322133
    [Google Scholar]
  16. Panagiotou N. Wayne Davies R. Selman C. Shiels P.G. Microvesicles as vehicles for tissue regeneration: Changing of the guards. Curr. Pathobiol. Rep. 2016 4 4 181 187 10.1007/s40139‑016‑0115‑5 27882267
    [Google Scholar]
  17. Buzas E.I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 2023 23 4 236 250 10.1038/s41577‑022‑00763‑8 35927511
    [Google Scholar]
  18. Atkin-Smith G.K. Tixeira R. Paone S. Mathivanan S. Collins C. Liem M. Goodall K.J. Ravichandran K.S. Hulett M.D. Poon I.K.H. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 2015 6 1 7439 10.1038/ncomms8439 26074490
    [Google Scholar]
  19. Yu L. Zhu G. Zhang Z. Yu Y. Zeng L. Xu Z. Weng J. Xia J. Li J. Pathak J.L. Apoptotic bodies: Bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J. Nanobiotechnology 2023 21 1 218 10.1186/s12951‑023‑01969‑1 37434199
    [Google Scholar]
  20. Battistelli M Falcieri E. Apoptotic bodies: Particular extracellular vesicles involved in intercellular communication. Advances in Medical Biochemistry, Genomics, Physiology, and Pathology 1st ed Jenny Stanford Publishing 2021 473 486 10.1201/9781003180449‑20
    [Google Scholar]
  21. Surman M. Kędracka-Krok S. Jankowska U. Drożdż A. Stępień E. Przybyło M. Proteomic profiling of ectosomes derived from paired urothelial bladder cancer and normal cells reveals the presence of biologically-relevant molecules. Int. J. Mol. Sci. 2021 22 13 6816 10.3390/ijms22136816 34202855
    [Google Scholar]
  22. Yuana Y. Sturk A. Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013 27 1 31 39 10.1016/j.blre.2012.12.002 23261067
    [Google Scholar]
  23. Koniusz S. Andrzejewska A. Muraca M. Srivastava A.K. Janowski M. Lukomska B. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front. Cell. Neurosci. 2016 10 109 10.3389/fncel.2016.00109 27199663
    [Google Scholar]
  24. Meehan B. Rak J. Di Vizio D. Oncosomes – large and small: What are they, where they came from? J. Extracell. Vesicles 2016 5 1 33109 10.3402/jev.v5.33109 27680302
    [Google Scholar]
  25. Mallia A. Gianazza E. Zoanni B. Brioschi M. Barbieri S.S. Banfi C. Proteomics of extracellular vesicles: Update on their composition, biological roles and potential use as diagnostic tools in atherosclerotic cardiovascular diseases. Diagnostics 2020 10 10 843 10.3390/diagnostics10100843 33086718
    [Google Scholar]
  26. Liu J. Chen Y. Pei F. Zeng C. Yao Y. Liao W. Zhao Z. Extracellular vesicles in liquid biopsies: Potential for disease diagnosis. BioMed Res. Int. 2021 2021 1 6611244 10.1155/2021/6611244 33506022
    [Google Scholar]
  27. Griffiths H. Møller L. Bartosz G. Bast A. Bertoni-Freddari C. Collins A. Cooke M. Coolen S. Haenen G. Hoberg A.M. Loft S. Lunec J. Olinski R. Parry J. Pompella A. Poulsen H. Verhagen H. Astley S.B. Biomarkers. Mol. Aspects Med. 2002 23 1-3 101 208 10.1016/S0098‑2997(02)00017‑1 12079771
    [Google Scholar]
  28. Zhang X. Yuan X. Shi H. Wu L. Qian H. Xu W. Exosomes in cancer: Small particle, big player. J. Hematol. Oncol. 2015 8 1 83 10.1186/s13045‑015‑0181‑x 26156517
    [Google Scholar]
  29. Zheng H. Zhan Y. Liu S. Lu J. Luo J. Feng J. Fan S. The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J. Exp. Clin. Cancer Res. 2018 37 1 226 10.1186/s13046‑018‑0901‑5 30217217
    [Google Scholar]
  30. Barnie PA Afrifa J Gyamerah EO Amoani B Extracellular vesicles as biomarkers and therapeutic targets in cancers. Physiology IntechOpen 2022 10.5772/intechopen.101783
    [Google Scholar]
  31. Liu S. Liao Y. Hosseinifard H. Imani S. Wen Q. Diagnostic role of extracellular vesicles in cancer: A comprehensive systematic review and meta-analysis. Front. Cell Dev. Biol. 2021 9 705791 10.3389/fcell.2021.705791 34722499
    [Google Scholar]
  32. Beatriz M. Vilaça R. Lopes C. Exosomes: innocent bystanders or critical culprits in neurodegenerative diseases. Front. Cell Dev. Biol. 2021 9 635104 10.3389/fcell.2021.635104 34055771
    [Google Scholar]
  33. Vandendriessche C. Balusu S. Van Cauwenberghe C. Brkic M. Pauwels M. Plehiers N. Bruggeman A. Dujardin P. Van Imschoot G. Van Wonterghem E. Hendrix A. Baeke F. De Rycke R. Gevaert K. Vandenbroucke R.E. Importance of extracellular vesicle secretion at the blood–cerebrospinal fluid interface in the pathogenesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2021 9 1 143 10.1186/s40478‑021‑01245‑z 34425919
    [Google Scholar]
  34. Behrens F. Holle J. Kuebler W.M. Simmons S. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med. Exp. 2020 8 S1 Suppl. 1 22 10.1186/s40635‑020‑00306‑2 33336297
    [Google Scholar]
  35. Erdbrügger U. Le T.H. Extracellular vesicles in renal diseases: More than novel biomarkers? J. Am. Soc. Nephrol. 2016 27 1 12 26 10.1681/ASN.2015010074 26251351
    [Google Scholar]
  36. Garcia-Contreras M. Brooks R.W. Boccuzzi L. Robbins P.D. Ricordi C. Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2017 21 12 2940 2956 28682421
    [Google Scholar]
  37. Pang H. Luo S. Xiao Y. Xia Y. Li X. Huang G. Xie Z. Zhou Z. Emerging roles of exosomes in T1DM. Front. Immunol. 2020 11 593348 10.3389/fimmu.2020.593348 33324409
    [Google Scholar]
  38. Perez-Hernandez J Cortes R Extracellular vesicles as biomarkers of systemic lupus erythematosus. Dis. Markers. 2015 2015 613536 10.1155/2015/613536
    [Google Scholar]
  39. Estes S. Konstantinov K. Young J.D. Manufactured extracellular vesicles as human therapeutics: Challenges, advances, and opportunities. Curr. Opin. Biotechnol. 2022 77 102776 10.1016/j.copbio.2022.102776 36041354
    [Google Scholar]
  40. Murphy D.E. de Jong O.G. Brouwer M. Wood M.J. Lavieu G. Schiffelers R.M. Vader P. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Exp. Mol. Med. 2019 51 3 32 10.1038/s12276‑019‑0223‑5 30872574
    [Google Scholar]
  41. Piffoux M. Volatron J. Silva A. Gazeau F. Thinking quantitatively of RNA-based information transfer via extracellular vesicles: Lessons to learn for the design of RNA-loaded evs. Pharmaceutics 2021 13 11 1931 10.3390/pharmaceutics13111931 34834346
    [Google Scholar]
  42. Wahlgren J. Karlson T.D.L. Brisslert M. Vaziri Sani F. Telemo E. Sunnerhagen P. Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012 40 17 130 10.1093/nar/gks463 22618874
    [Google Scholar]
  43. Meng W. He C. Hao Y. Wang L. Li L. Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv. 2020 27 1 585 598 10.1080/10717544.2020.1748758 32264719
    [Google Scholar]
  44. Gangadaran P. Li X.J. Lee H.W. Oh J.M. Kalimuthu S. Rajendran R.L. Son S.H. Baek S.H. Singh T.D. Zhu L. Jeong S.Y. Lee S.W. Lee J. Ahn B.C. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget 2017 8 66 109894 109914 10.18632/oncotarget.22493 29299117
    [Google Scholar]
  45. Malhotra H. Sheokand N. Kumar S. Chauhan A.S. Kumar M. Jakhar P. Boradia V.M. Raje C.I. Raje M. Exosomes: Tunable nano vehicles for macromolecular delivery of transferrin and lactoferrin to the specific intracellular compartment. J. Biomed. Nanotechnol. 2016 12 5 1101 1114 10.1166/jbn.2016.2229 27305829
    [Google Scholar]
  46. Akbar A. Malekian F. Baghban N. Kodam S.P. Ullah M. Methodologies to isolate and purify clinical grade extracellular vesicles for medical applications. Cells 2022 11 2 186 10.3390/cells11020186 35053301
    [Google Scholar]
  47. Salmond N. Williams K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer – Time for standardization? Nanoscale Adv. 2021 3 7 1830 1852 10.1039/D0NA00676A 36133088
    [Google Scholar]
  48. Bano R. Ahmad F. Mohsin M. A perspective on the isolation and characterization of extracellular vesicles from different biofluids. RSC Advances 2021 11 32 19598 19615 10.1039/D1RA01576A 35479207
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031368788250708153633
Loading
/content/journals/ddl/10.2174/0122103031368788250708153633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test