Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

The bioavailability of a variety of drugs has been enhanced by the use of self-nanoemulsifying drug delivery systems (SNEDDS). Despite having several pharmacological effects, myricetin has limited bioavailability because of its poor solubility, which limits its use. Self-nanoemulsifying drug delivery systems (SNEDDS) have been developed to solve this issue.

Aim

The study aims to develop and characterize a self-nanoemulsifying drug delivery system (SNEDDS) of myricetin and evaluate its pharmacokinetics, toxicity, and anti-ulcer activity.

Materials and Methods

Myricetin-SNEDDS was formulated by solubility testing of myricetin in excipients, constructing a pseudo-ternary phase diagram and characterized using emulsification time, percent transmittance, thermodynamic stability, droplet size, polydispersity index and morphological characterization (TEM). Further acute oral toxicity study, pharmacokinetic parameters, antiulcer activity and anti-oxidant activity on stomach tissue for Myricetin-SNEDDS were evaluated.

Results

Tween 80 (surfactant), propylene glycol (co-surfactant) and olive oil (oil phase) were used to prepare myricetin-SNEDDS, which was then optimized according to droplet size and emulsification ability. The obtained Myricetin-SNEDDS ME1F2 with droplet size <100 nm and emulsification time 9s. Further evaluations showed that these Myricetin-SNEDDS have no toxicity and the pharmacokinetic study showed improved systemic drug absorption, which increases oral bioavailability. Myricetin-SNEDDS showed significant anti-ulcer activity and anti-oxidant activity on stomach tissue.

Discussion

The developed Myricetin-SNEDDS significantly enhanced solubility and oral bioavailability compared to pure myricetin. Improved pharmacokinetic parameters, absence of toxicity, and notable anti-ulcer as well as antioxidant activity confirm its therapeutic potential. Thus, SNEDDS can be considered an effective strategy for overcoming the limitations of poorly soluble bioactives like myricetin.

Conclusion

Myricetin's gastroprotective properties and anti-oxidative efficacy can be improved by SNEDDS, according to research, and it has a good probability of becoming a bioactive substance used as an anti-ulcer agent.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031372608250519104757
2025-05-22
2025-12-22
Loading full text...

Full text loading...

References

  1. QianJ. MengH. XinL. XiaM. ShenH. LiG. XieY. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation.Colloids Surf. B Biointerfaces201716010110910.1016/j.colsurfb.2017.09.02028917148
    [Google Scholar]
  2. GodseS. MohanM. KastureV. KastureS. Effect of myricetin on blood pressure and metabolic alterations in fructose hypertensive rats.Pharm. Biol.201048549449810.3109/1388020090318852620645789
    [Google Scholar]
  3. KataokaM YanoK HamatsuY MasaokaY SakumaS YamashitaS Assessment of absorption potential of poorly water soluble drugs by using the dissolution/permeation system.Europ J. Pharma Biopharma2013853 Pt B1317132410.1016/j.ejpb.2013.06.018
    [Google Scholar]
  4. YaoY. LinG. XieY. MaP. LiG. MengQ. WuT. Preformulation studies of myricetin: A natural antioxidant flavonoid.Pharmazie2014691192624601218
    [Google Scholar]
  5. DangY. LinG. XieY. DuanJ. MaP. LiG. JiG. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability.Drug Res.2013641051652210.1055/s‑0033‑136322024357136
    [Google Scholar]
  6. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  7. PathakK. RaghuvanshiS. Oral bioavailability: Issues and solutions via nanoformulations.Clin. Pharmacokinet.201554432535710.1007/s40262‑015‑0242‑x25666353
    [Google Scholar]
  8. ZhangL. QiZ. HuangQ. ZengK. SunX. LiJ. LiuY.N. Imprinted-like biopolymeric micelles as efficient nanovehicles for curcumin delivery.Colloids Surf B Biointerfaces2014123152210.1016/j.colsurfb.2014.08.03325222139
    [Google Scholar]
  9. KarashimaM. KimotoK. YamamotoK. KojimaT. IkedaY. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies.Eur J. Pharm. Biopharm201610714215010.1016/j.ejpb.2016.07.00627393561
    [Google Scholar]
  10. TranT.H. GuoY. SongD. BrunoR.S. LuX. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.J. Pharm. Sci.2014103384085210.1002/jps.2385824464737
    [Google Scholar]
  11. KhanA.W. KottaS. AnsariS.H. SharmaR.K. AliJ. Self nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation.Drug Deliv201522455256110.3109/10717544.2013.87800324512268
    [Google Scholar]
  12. SharmaS. NarangJ.K. AliJ. BabootaS. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model.Nanotechnology2016273737510110.1088/0957‑4484/27/37/37510127491690
    [Google Scholar]
  13. KolliparaS. GandhiR.K. Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations.Acta Pharm. Sin. B20144533334910.1016/j.apsb.2014.09.00126579403
    [Google Scholar]
  14. NarayananM. ReddyK.M. MarsicanoE. Peptic ulcer disease and helicobacter pylori infection.Mo Med.2018115321922430228726
    [Google Scholar]
  15. YeoSH YangCH [Peptic ulcer disease associated with helicobacter pylori infection].Korean J. Gastroenterol.201667628929910.4166/kjg.2016.67.6.289
    [Google Scholar]
  16. PéricoL.L. Emílio-SilvaM.T. OharaR. RodriguesV.P. BuenoG. Barbosa-FilhoJ.M. RochaL.R.M. BatistaL.M. Hiruma-LimaC.A. Systematic analysis of monoterpenes: Advances and challenges in the treatment of peptic ulcer diseases.Biomolecules202010226510.3390/biom1002026532050614
    [Google Scholar]
  17. PathakR. ChandraP. Bioactive compounds from myrica esculenta: Antioxidant insights and docking studies on h+k+-atpase and h2 receptor targets.Med. Chem.20251910.2174/0115734064366819250125070619
    [Google Scholar]
  18. BalakrishnanP. LeeB.J. OhD.H. KimJ.O. HongM.J. JeeJ.P. KimJ.A. YooB.K. WooJ.S. YongC.S. ChoiH.G. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS).Eur J. Pharm. Biopharm200972353954510.1016/j.ejpb.2009.03.00119298857
    [Google Scholar]
  19. LinT.C. YangC.Y. WuT.H. TsengC.H. YenF.L. Myricetin nanofibers enhanced water solubility and skin penetration for increasing antioxidant and photoprotective activities.Pharmaceutics202315390610.3390/pharmaceutics1503090636986766
    [Google Scholar]
  20. MorakulB. TeeranachaideekulV. LimwikrantW. JunyaprasertV.B. Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery.Sci. Rep2024141885110.1038/s41598‑024‑59617‑z38632321
    [Google Scholar]
  21. BalochJ. SohailM.F. SarwarH.S. KianiM.H. KhanG.M. JahanS. RafayM. ChaudhryM.T. YasinzaiM. ShahnazG. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation.Medicina201955521010.3390/medicina5505021031137751
    [Google Scholar]
  22. YooJ.H. ShanmugamS. ThapaP. LeeE.S. BalakrishnanP. BaskaranR. YoonS.K. ChoiH.G. YongC.S. YooB.K. HanK. Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein.Arch. Pharm. Res.201033341742610.1007/s12272‑010‑0311‑520361307
    [Google Scholar]
  23. BerkmanM. GüleçK. Pseudo ternary phase diagrams: A practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul.J. Pharm.20215114249
    [Google Scholar]
  24. VlaiaL. ConeacG. MuţA.M. OlariuI. VlaiaV. AnghelD.F. MaximM.E. DobrescuA. HîrjăuM. LupuleasaD. Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: Formulation design based on pseudo-ternary phase diagrams and physicochemical characterization.Processes20219114410.3390/pr9010144
    [Google Scholar]
  25. PatelJ. KevinG. PatelA. RavalM. ShethN. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery.Int. J. Pharm. Investig.20111211211810.4103/2230‑973X.8243123071930
    [Google Scholar]
  26. YooJ. BaskaranR. YooB.K. Self-nanoemulsifying drug delivery system of lutein: Physicochemical properties and effect on bioavailability of warfarin.Biomol Ther.201321217317910.4062/biomolther.2013.01124009877
    [Google Scholar]
  27. UstaD.Y. TimurB. TeksinZ.S. Formulation development, optimization by Box-Behnken design, characterization, in vitro, ex-vivo, and in vivo evaluation of bosentan-loaded self-nanoemulsifying drug delivery system: A novel alternative dosage form for pulmonary arterial hypertension treatment.Eur J. Pharm. Sci.202217410615910.1016/j.ejps.2022.10615935263632
    [Google Scholar]
  28. RathoreC. HemrajaniC. SharmaA.K. GuptaP.K. JhaN.K. AljabaliA.A.A. GuptaG. SinghS.K. YangJ.C. DwivediR.P. DuaK. ChellappanD.K. NegiP. TambuwalaM.M. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: Optimization, characterization, pharmacokinetic, and hepatotoxicity studies.Drug Deliv. Transl. Res.202313129230710.1007/s13346‑022‑01193‑835831776
    [Google Scholar]
  29. KaziM. Al-SwairiM. AhmadA. RaishM. AlanaziF.K. BadranM.M. KhanA.A. AlanaziA.M. HussainM.D. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment.Front. Pharmacol.20191045910.3389/fphar.2019.0045931118895
    [Google Scholar]
  30. IzhamM.M.N. HussinY. AzizM.N.M. YeapS.K. RahmanH.S. MasarudinM.J. MohamadN.E. AbdullahR. AlitheenN.B. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in vitro.Nanomaterials201997102810.3390/nano907102831323842
    [Google Scholar]
  31. PrianiS.E. RahayuD.P. MaulanaI.T. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of cod liver oil.Borneo J. Pharm.20214212813410.33084/bjop.v4i2.1942
    [Google Scholar]
  32. SyukriY. FitrianiH. PandapotanH. NugrohoB.H. Formulation, characterization and stability of ibuprofen-loaded self-nano emulsifying drug delivery system (SNEDDS).Indones J. Pharm.201930210510.14499/indonesianjpharm30iss2pp105‑113
    [Google Scholar]
  33. KumarM. ChawlaP.A. FarukA. ChawlaV. Solid self nanoemulsifying drug delivery systems of nimodipine: Development and evaluation.Future J. Pharm. Sci.20241018710.1186/s43094‑024‑00653‑x
    [Google Scholar]
  34. ZafarA. YasirM. AlruwailiN.K. ImamS.S. AlsaidanO.A. AlshehriS. GhoneimM.M. AlqurainiA. RawafA. AnsariM.J. SaraU.V.S. Formulation of self-nanoemulsifying drug delivery system of cephalexin: Physiochemical characterization and antibacterial evaluation.Polymers2022145105510.3390/polym1405105535267877
    [Google Scholar]
  35. InugalaS EedaraBB SunkavalliS DhurkeR KandadiP JukantiR Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation.Eur J. Pharm. Sci.20157411010.1016/j.ejps.2015.03.024
    [Google Scholar]
  36. NasrA. GardouhA. GhorabM. Novel solid selfnanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation.Pharmaceutics2016832010.3390/pharmaceutics803002027355963
    [Google Scholar]
  37. NoO.T. 423: Acute Oral Toxicity—OECD Guideline for the Testing of Chemicals.Paris, FranceOECD Publishing2002
    [Google Scholar]
  38. SlaouiM. FietteL. Histopathology procedures: From tissue sampling to histopathological evaluation.Methods Mol. Biol.2011691698210.1007/978‑1‑60761‑849‑2_420972747
    [Google Scholar]
  39. ImranM. SaeedF. HussainG. ImranA. MehmoodZ. GondalT.A. El-GhorabA. AhmadI. PezzaniR. ArshadM.U. BachaU. ShariartiM.A. RaufA. MuhammadN. ShahZ.A. ZenginG. IslamS. Myricetin: A comprehensive review on its biological potentials.Food. Sci. Nutr.20219105854586810.1002/fsn3.251334646551
    [Google Scholar]
  40. IbrahimI.A.A. HusseinA.I. MuterM.S. MohammedA.T. Al-MedhtiyM.H. ShareefS.H. AzizP.Y. AghaN.F.S. AbdullaM.A. Effect of nano silver on gastroprotective activity against ethanol-induced stomach ulcer in rats.Biomed. Pharmacother.202215411355010.1016/j.biopha.2022.11355035994814
    [Google Scholar]
  41. ChandraP KaleemM SachanN PathakR AlanaziAS Alsaif, NA Gastroprotective evaluation of Medicago sativa L. (Fabaceae) on diabetic rats.Saudi Pharm. J.2023311110181510.1016/j.jsps.2023.101815
    [Google Scholar]
  42. SofiS.H. NuraddinS.M. AminZ.A. Al-BustanyH.A. NadirM.Q. Gastroprotective activity of Hypericum perforatum extract in ethanol-induced gastric mucosal injury in Wistar rats: A possible involvement of H+/K+ ATPase α inhibition.Heliyon2020610e0524910.1016/j.heliyon.2020.e0524933102861
    [Google Scholar]
  43. SaxenaB. SinghS. Comparison of three acute stress models for simulating the pathophysiology of stress-related mucosal disease.Drug Discov. Ther.20171129810310.5582/ddt.2016.0108128320982
    [Google Scholar]
  44. ZhouD. YangQ. TianT. ChangY. LiY. DuanL.R. LiH. WangS.W. Gastroprotective effect of gallic acid against ethanol induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role.Biomed. Pharmacother.202012611007510.1016/j.biopha.2020.11007532179202
    [Google Scholar]
  45. MengJ. ChenT. ZhaoY. LuS. YuH. ChangY. ChenD. Study of the mechanism of anti-ulcer effects of virgin coconut oil on gastric ulcer-induced rat model.Arch. Med. Sci.20191551329133510.5114/aoms.2018.7694331572481
    [Google Scholar]
  46. SabiuS. GarubaT. SunmonuT. AjaniE. SulymanA. NurainI. BalogunA. Indomethacin-induced gastric ulceration in rats: Protective roles of Spondias mombin a nd Ficus exasperata.Toxicol. Rep2015226126710.1016/j.toxrep.2015.01.00228962358
    [Google Scholar]
  47. DanismanB. CicekB. YildirimS. BolatI. KantarD. GolokhvastK.S. NikitovicD. TsatsakisA. TaghizadehghalehjoughiA. Carnosic acid ameliorates indomethacin-induced gastric ulceration in rats by alleviating oxidative stress and inflammation.Biomedicines202311382910.3390/biomedicines1103082936979808
    [Google Scholar]
  48. IqbalU. MalikA. SialN.T. MehmoodM.H. UttraA.M. TulainU.R. ErumA. Fayyaz-ur-Rehman, M.; Welson, N.N.; Mahmoud, M.H.; Alexiou, A.; Papadakis, M.; El-Saber Bathia, G. Eucalyptol attenuates indomethacin-induced gastric ulcers in rats by modulating the ICAM-1, eNOS and COX/LOX pathways: Insights from in silico, in vitro and in vivo approaches.Food. Chem. Toxicol.202519911531910.1016/j.fct.2025.11531939965739
    [Google Scholar]
  49. YadavA KhatoonR SharmaA. Antiulcer activity of momordica dioica fruits, extract.World J. Pharm. Pharm. Sci.202224113
    [Google Scholar]
  50. ShettyA.K. JangiA. KurdiM.S. YashaswiniL. Evaluation of Gastric Contents and Volume After Ingestion of Apple Juice versus Pure Complex Carbohydrate Using Gastric Ultrasonography: A Randomised Clinical Study.J. Clin. Diagn. Res.20231710UC22UC2610.7860/JCDR/2023/64023.18595
    [Google Scholar]
  51. NawaleS. PriyankaN. DasS. RajuG.M. Data of in vivo screening of antiulcer activity for methanolic extract of Vernonia elaeagnifolia DC.Data Brief20192310375310.1016/j.dib.2019.10375331406898
    [Google Scholar]
  52. AbduljabbarA. AbdullahF.O. AbdoulrahmanK. GalaliY. AbdelI. Abdel Aziz IbrahimI. Gastroprotective, biochemical, and acute toxicity effects of papaver decaisnei against ethanol induced gastric ulcers in rats.Processes202210
    [Google Scholar]
  53. ZhangJ. ChenR. YuZ. XueL. Superoxide dismutase (SOD) and catalase (CAT) activity assay protocols for Caenorhabditis elegans.Bio Protoc.2017716e250510.21769/BioProtoc.250534541169
    [Google Scholar]
  54. HadwanM.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues.BMC Biochem.2018191710.1186/s12858‑018‑0097‑530075706
    [Google Scholar]
  55. BatranA.R. Al-BayatyF. Jamil Al-ObaidiM.M. AbdualkaderA.M. HadiH.A. AliH.M. AbdullaM.A. In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats.PLoS One201385e6475110.1371/journal.pone.006475123724090
    [Google Scholar]
  56. RizzoM. Measurement of malondialdehyde as a biomarker of lipid oxidation in fish.Am. J. Anal. Chem.202415930333210.4236/ajac.2024.159020
    [Google Scholar]
  57. TippleT.E. RogersL.K. Methods for the determination of plasma or tissue glutathione levels.Methods Mol. Biol.201288931532410.1007/978‑1‑61779‑867‑2_2022669674
    [Google Scholar]
  58. JamialahmadiK. AmiriA.H. ZahedipourF. FarajiF. KarimiG. Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage.J. Pharmacopuncture202225434435310.3831/KPI.2022.25.4.34436628343
    [Google Scholar]
  59. RepettoM.G. LlesuyS.F. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers.Braz J. Med. Biol. Res.200235552353410.1590/S0100‑879X200200050000312011936
    [Google Scholar]
  60. CasaL.C. VillegasI. Alarcón de la LastraC. MotilvaV. CaleroM.M.J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions.J. Ethnopharmacol.2000711-2455310.1016/S0378‑8741(99)00174‑910904145
    [Google Scholar]
  61. DursunH. BiliciM. AlbayrakF. OzturkC. SaglamM.B. AlpH.H. SuleymanH. Antiulcer activity of fluvoxamine in rats and its effect on oxidant and antioxidant parameters in stomach tissue.BMC Gastroenterol.2009913610.1186/1471‑230X‑9‑3619457229
    [Google Scholar]
  62. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid Med. Cell. Longev2014201413110.1155/2014/36043824999379
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031372608250519104757
Loading
/content/journals/ddl/10.2174/0122103031372608250519104757
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-oxidant; anti-ulcer; bioactive substance; bioavailability; Myricetin; SNEDDs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test