Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Diabetic nephropathy, a major contributor to chronic kidney disease, is closely associated with inflammatory responses.

Objectives

This study aimed to evaluate the effectiveness of combination therapy with dapagliflozin and telmisartan in treating diabetic nephropathy and its effect on patient’s albuminuria levels.

Materials and Methods

We conducted a 12-week prospective observational study to assess diabetic nephropathy. Patients with diabetic nephropathy were treated with either dapagliflozin and telmisartan (n=92) or telmisartan alone (n=92). Measurements of waist-to-hip ratio, fasting blood glucose, hemoglobin A1c (HbA1c), blood pressure, urinary albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), uric acid, blood urea nitrogen, lipid profile, and inflammatory biomarkers, including C-C motif chemokine ligand 21 messenger RNA (CCL21 mRNA) and monocyte chemoattractant protein-1 (MCP-1), were obtained at baseline and following 12-weeks of treatment.

Results

Dapagliflozin and telmisartan combination therapy demonstrated a significant decrease in UACR compared with baseline levels (p<0.001). After treatment, the dapagliflozin and telmisartan group had significantly lower waist-to-hip ratio, fasting blood glucose, HbA1c, uric acid, total cholesterol, and low-density lipoprotein compared with the monotherapy group (p<0.05). Additionally, inflammatory biomarkers, including CCL21 mRNA and MCP-1, were substantially lower in the combination therapy group than in the monotherapy group (p<0.05).

Conclusion

In comparison to monotherapy, combination therapy demonstrated more significant clinical effects in treating diabetic nephropathy. This combination therapy effectively controls blood glucose levels and UACR, reduces inflammatory responses, and improves kidney function recovery in diabetic nephropathy patients, thereby enhancing the overall clinical treatment outcomes for these patients.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611361265250211062540
2025-11-01
2025-12-02
Loading full text...

Full text loading...

References

  1. NaamanS.C. BakrisG.L. Diabetic nephropathy: Update on pillars of therapy slowing progression.Diabetes Care20234691574158610.2337/dci23‑0030 37625003
    [Google Scholar]
  2. PelleM.C. ProvenzanoM. BusuttiM. Up-date on diabetic nephropathy.Life2022128120210.3390/life12081202 36013381
    [Google Scholar]
  3. LiK.X. JiM.J. SunH.J. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy.Gene202178014553210.1016/j.gene.2021.145532 33631244
    [Google Scholar]
  4. ThomasB. The global burden of diabetic kidney disease: Time trends and gender gaps.Curr. Diab. Rep.20191941810.1007/s11892‑019‑1133‑6 30826889
    [Google Scholar]
  5. HovindP. RossingP. TarnowL. SmidtU.M. ParvingH.H. Progression of diabetic nephropathy.Kidney Int.200159270270910.1046/j.1523‑1755.2001.059002702.x 11168952
    [Google Scholar]
  6. CorreaD.J. RodríguezL.D. NúñezM.E. Inflammatory targets in diabetic nephropathy.J. Clin. Med.20209245810.3390/jcm9020458 32046074
    [Google Scholar]
  7. OrtegaR.M. MateosR.S. LamasS. OrtizA. DiezR.R.R. Targeting the progression of chronic kidney disease.Nat. Rev. Nephrol.202016526928810.1038/s41581‑019‑0248‑y 32060481
    [Google Scholar]
  8. WannerC. InzucchiS.E. LachinJ.M. Empagliflozin and progression of kidney disease in type 2 diabetes.N. Engl. J. Med.2016375432333410.1056/NEJMoa1515920 27299675
    [Google Scholar]
  9. NealB. PerkovicV. MahaffeyK.W. Canagliflozin and cardiovascular and renal events in type 2 diabetes.N. Engl. J. Med.2017377764465710.1056/NEJMoa1611925 28605608
    [Google Scholar]
  10. FuE.L. ClaseC.M. EvansM. Comparative effectiveness of renin-angiotensin system inhibitors and calcium channel blockers in individuals with advanced CKD: A nationwide observational cohort study.Am. J. Kidney Dis.2021775719729.e110.1053/j.ajkd.2020.10.006 33246024
    [Google Scholar]
  11. ColemanC.I. WeedaE.R. KharatA. BookhartB. BakerW.L. Impact of angiotensin‐converting enzyme inhibitors or angiotensin receptor blockers on renal and mortality outcomes in people with Type 2 diabetes and proteinuria.Diabet. Med.2020371445210.1111/dme.14107 31407377
    [Google Scholar]
  12. ElsafaE. AliP.Z. Protective effect of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor antagonists (ARBs) on microalbuminuria in diabetic patients.Clinical Diabetology20209319320010.5603/DK.2020.0002
    [Google Scholar]
  13. XiaD. ZangJ. Telmisartan combined with calcitriol enhances therapeutic efficacy for diabetic nephropathy while inhibiting inflammation and renal interstitial fibrosis.Am. J. Transl. Res.2023151165436550 38074815
    [Google Scholar]
  14. FauconA.L. FuE.L. StengelB. MazharF. EvansM. CarreroJ.J. A nationwide cohort study comparing the effectiveness of diuretics and calcium channel blockers on top of renin-angiotensin system inhibitors on chronic kidney disease progression and mortality.Kidney Int.2023104354255110.1016/j.kint.2023.05.024 37330214
    [Google Scholar]
  15. OyamaK. RazI. CahnA. Efficacy and safety of dapagliflozin according to background use of cardiovascular medications in patients with Type 2 diabetes: A prespecified secondary analysis of a randomized clinical trial.JAMA Cardiol.20227991492310.1001/jamacardio.2022.2006 35857296
    [Google Scholar]
  16. RossingP. InzucchiS.E. VartP. Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: Pooled analysis of the DAPA-CKD and DAPA-HF trials.Lancet Diabetes Endocrinol.2022101243410.1016/S2213‑8587(21)00295‑3 34856173
    [Google Scholar]
  17. PanchapakesanU. PeggK. GrossS. Effects of SGLT2 inhibition in human kidney proximal tubular cells-renoprotection in diabetic nephropathy?PLoS One201382e5444210.1371/journal.pone.0054442 23390498
    [Google Scholar]
  18. RivasV.L. LafuenteG.L. SanzA.B. OrtegaR.M. OrtizA. NiñoS.M.D. Non-canonical NFκB activation promotes chemokine expression in podocytes.Sci. Rep.2016612885710.1038/srep28857 27353019
    [Google Scholar]
  19. RajaP. MaxwellA.P. BrazilD.P. The potential of albuminuria as a biomarker of diabetic complications.Cardiovasc. Drugs Ther.202135345546610.1007/s10557‑020‑07035‑4 32681438
    [Google Scholar]
  20. BetzlerB.K. SultanaR. HeF. Impact of chronic kidney disease epidemiology collaboration (CKD-EPI) GFR estimating equations on CKD prevalence and classification among Asians.Front. Med.2022995743710.3389/fmed.2022.957437 35911392
    [Google Scholar]
  21. KochE.A.T. NakhoulR. NakhoulF. NakhoulN. Autophagy in diabetic nephropathy: A review.Int. Urol. Nephrol.20205291705171210.1007/s11255‑020‑02545‑4 32661628
    [Google Scholar]
  22. TungC.W. HsuY.C. ShihY.H. ChangP.J. LinC.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy.Nephrology 201823S4Suppl. 4323710.1111/nep.13451 30298646
    [Google Scholar]
  23. MateosR.S. PascualM.J.L. RíosO.L. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy.Int. J. Mol. Sci.20202111379810.3390/ijms21113798 32471207
    [Google Scholar]
  24. BaruttaF. BrunoG. GrimaldiS. GrudenG. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment.Endocrine201548373074210.1007/s12020‑014‑0437‑1 25273317
    [Google Scholar]
  25. SakaiN. WadaT. YokoyamaH. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis.Proc. Natl. Acad. Sci. USA200610338140981410310.1073/pnas.0511200103 16966615
    [Google Scholar]
  26. FengY. ZhongX. NiH.F. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy.J. Transl. Med.202119135510.1186/s12967‑021‑03030‑x 34404433
    [Google Scholar]
  27. FangY. WangB. PangB. Exploring the relations of NLR, hsCRP and MCP-1 with type 2 diabetic kidney disease: A cross-sectional study.Sci. Rep.2024141321110.1038/s41598‑024‑53567‑2 38332001
    [Google Scholar]
  28. ScurtF.G. MenneJ. BrandtS. Monocyte chemoattractant protein‐1 predicts the development of diabetic nephropathy.Diabetes Metab. Res. Rev.2022382e349710.1002/dmrr.3497 34541760
    [Google Scholar]
  29. BonnerR. AlbajramiO. HudspethJ. UpadhyayA. Diabetic kidney disease.Prim. Care202047464565910.1016/j.pop.2020.08.004 33121634
    [Google Scholar]
  30. MohsenM. ElberryA.A. RabeaM.A. AbdelrahimM.E.A. HusseinR.R.S. Recent therapeutic targets in diabetic nephropathy.Int. J. Clin. Pract.20217511e1465010.1111/ijcp.14650 34310818
    [Google Scholar]
  31. ZhangX. ZhouY. MaR. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease.J. Diabetes Complications202236110805610.1016/j.jdiacomp.2021.108056 34893426
    [Google Scholar]
  32. YamadaT. WakabayashiM. BhallaA. Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and network meta-analysis.Cardiovasc. Diabetol.20212011410.1186/s12933‑020‑01197‑z 33413348
    [Google Scholar]
  33. MoonJ.S. HongJ.H. JungY.J. FerranniniE. NauckM.A. LimS. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease.Trends Endocrinol. Metab.202233642444210.1016/j.tem.2022.03.005 35491295
    [Google Scholar]
  34. JongsN. GreeneT. ChertowG.M. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: A prespecified analysis from the DAPA-CKD trial.Lancet Diabetes Endocrinol.202191175576610.1016/S2213‑8587(21)00243‑6 34619106
    [Google Scholar]
  35. McMurrayJ.J.V. WheelerD.C. StefánssonB.V. Effects of dapagliflozin in patients with kidney disease, with and without heart failure.JACC Heart Fail.202191180782010.1016/j.jchf.2021.06.017 34446370
    [Google Scholar]
  36. TangriN. RastogiA. NanN.C. Dapagliflozin utilization in chronic kidney disease and its real-world effectiveness among patients with lower levels of albuminuria in the USA and Japan.Adv. Ther.20244131151116710.1007/s12325‑023‑02773‑x 38240949
    [Google Scholar]
  37. CaiA. ShenJ. YangX. Dapagliflozin alleviates renal inflammation and protects against diabetic kidney diseases, both dependent and independent of blood glucose levels.Front. Immunol.202314120583410.3389/fimmu.2023.1205834 38022502
    [Google Scholar]
  38. HeerspinkH.J.L. StefanssonB.V. ChertowG.M. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial.Nephrol. Dial. Transplant.202035227428210.1093/ndt/gfz290 32030417
    [Google Scholar]
  39. TuttleK.R. BrosiusF.C.III CavenderM.A. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: Report of a scientific workshop sponsored by the national kidney foundation.Am. J. Kidney Dis.20217719410910.1053/j.ajkd.2020.08.003 33121838
    [Google Scholar]
  40. LazzaroniE. LunatiM.E. MontefuscoL. Dapagliflozin acutely improves kidney function in type 2 diabetes mellitus. The PRECARE study.Pharmacol. Res.202218310637410.1016/j.phrs.2022.106374 35908663
    [Google Scholar]
  41. HallowK.M. BoultonD.W. PenlandR.C. Renal effects of dapagliflozin in people with and without diabetes with moderate or severe renal dysfunction: Prospective modeling of an ongoing clinical trial.J. Pharmacol. Exp. Ther.20203751769110.1124/jpet.120.000040 32764153
    [Google Scholar]
  42. JinZJ WangGZ Clinical efficacy of dapagliflozin in the treatment of patients with diabetic nephropathy and its effect on proteinuria level. Diabetes Metab Syndr Obes.2023162167-217510.2147/DMSO.S42157937502285
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611361265250211062540
Loading
/content/journals/cvp/10.2174/0115701611361265250211062540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test