Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Complex coronary lesions have been an understudied aspect of coronary artery disease in elderly patients. Oxidative stress and inflammation may be implicated in the pathogenesis of complex coronary lesions.

Objectives

The aim of this study is to investigate the complex interplay between pro-oxidative stress response, pro-inflammatory response, and complex coronary lesions in elderly patients.

Methods

Enzyme-linked immunosorbent assays for the detection of serum biomarkers [reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), superoxide dismutase (SOD) activity, total antioxidant capacity (TAC), transforming growth factor beta (TGF-β) and interleukin-4 (IL-4)] were performed in elderly patients with complex coronary lesions.

Results

The levels of pro-oxidative stress and pro-inflammatory markers (ROS, MDA, TNF-α and IFN-γ) were increased in the complex coronary lesion group when compared with the non-complex coronary lesion group ( < 0.01) in elderly patients. Anti-oxidative stress and anti-inflammatory markers (SOD activity, TAC, TGF-β, and IL-4) were decreased in the complex coronary lesion group when compared with the non-complex coronary lesion group ( < 0.01) in elderly patients.

Conclusion

Our findings suggest that the pathogenesis of complex coronary lesions may involve pro-oxidant/anti-oxidant and pro-inflammation/anti-inflammation imbalance, as well as the interplay between oxidative stress and inflammation in elderly patients.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611323165250211045917
2025-11-01
2025-12-08
Loading full text...

Full text loading...

References

  1. VioliF. PignatelliP. ValerianiE. Oxidative stress and atherosclerosis: Basic and clinical open issues.Kardiol. Pol.2024827-868969110.33963/v.phj.100994 38845438
    [Google Scholar]
  2. Morales-VillegasE. Coronary atherosclerosis the implications of being a woman.Curr. Hypertens. Rev.20149429730910.2174/1573402110666140702092016 24993280
    [Google Scholar]
  3. MontarelloN.J. NguyenM.T. WongD.T.L. NichollsS.J. PsaltisP.J. Inflammation in coronary atherosclerosis and its therapeutic implications.Cardiovasc. Drugs Ther.202236234736210.1007/s10557‑020‑07106‑6 33170943
    [Google Scholar]
  4. LibbyP. PasterkampG. CreaF. JangI.K. Reassessing the mechanisms of acute coronary syndromes.Circ. Res.2019124115016010.1161/CIRCRESAHA.118.311098 30605419
    [Google Scholar]
  5. GoldsteinJ.A. MehtaN.K. Extent of coronary atherosclerosis and ischemic myocardium foment sudden cardiac death.Catheter. Cardiovasc. Interv.202299381281310.1002/ccd.30130 35235687
    [Google Scholar]
  6. SwirskiF.K. NahrendorfM. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure.Science2013339611616116610.1126/science.1230719 23307733
    [Google Scholar]
  7. GramlichY. DaiberA. BuschmannK. Oxidative stress in cardiac tissue of patients undergoing coronary artery bypass graft surgery: The effects of overweight and obesity.Oxid. Med. Cell. Longev.201820181659832610.1155/2018/6598326 30647815
    [Google Scholar]
  8. SalvatoreT. GalieroR. CaturanoA. Coronary microvascular dysfunction in diabetes mellitus: Pathogenetic mechanisms and potential therapeutic options.Biomedicines2022109227410.3390/biomedicines10092274 36140374
    [Google Scholar]
  9. DaienV. CarriereI. KawasakiR. Retinal vascular caliber is associated with cardiovascular biomarkers of oxidative stress and inflammation: the POLA study.PLoS One201387e7108910.1371/journal.pone.0071089 23923054
    [Google Scholar]
  10. MishraP. SamantaL. Oxidative stress and heart failure in altered thyroid States.ScientificWorldJournal2012201211710.1100/2012/741861 22649319
    [Google Scholar]
  11. JakubiakG.K. OsadnikK. LejawaM. KasperczykS. OsadnikT. PawlasN. Oxidative stress in association with metabolic health and obesity in young adults.Oxid. Med. Cell. Longev.202120211998735210.1155/2021/9987352 34257828
    [Google Scholar]
  12. JakubiakG.K. OsadnikK. LejawaM. “Obesity and insulin resistance” is the component of the metabolic syndrome most strongly associated with oxidative stress.Antioxidants20211117910.3390/antiox11010079 35052583
    [Google Scholar]
  13. AridaA. ProtogerouA.D. KitasG.D. SfikakisP.P. Systemic inflammatory response and atherosclerosis: The paradigm of chronic inflammatory rheumatic diseases.Int. J. Mol. Sci.2018197189010.3390/ijms19071890 29954107
    [Google Scholar]
  14. SalazarG. NADPH oxidases and mitochondria in vascular senescence.Int. J. Mol. Sci.2018195132710.3390/ijms19051327 29710840
    [Google Scholar]
  15. ZhuZ. LiJ. ZhangX. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway.BMC Complement. Altern. Med.201919111110.1186/s12906‑019‑2526‑4 31146723
    [Google Scholar]
  16. AsadiA. Yaghobi NezhadD. Rafiei JavazmA. In vitro effects of curcumin on transforming growth factor-β-mediated non-smad signaling pathway, oxidative stress, and pro-inflammatory cytokines production with human vascular smooth muscle cells.Iran. J. Allergy Asthma Immunol.2020191849310.18502/ijaai.v19i1.2421 32245324
    [Google Scholar]
  17. Sudar-MilovanovicE. GluvicZ. ObradovicM. ZaricB. IsenovicE.R. Tryptophan metabolism in atherosclerosis and diabetes.Curr. Med. Chem.20222919911310.2174/0929867328666210714153649 34269660
    [Google Scholar]
  18. FukaiT. Ushio-FukaiM. Superoxide dismutases: Role in redox signaling, vascular function, and diseases.Antioxid. Redox Signal.20111561583160610.1089/ars.2011.3999 21473702
    [Google Scholar]
  19. OthmanZ.A. ZakariaZ. SuleimanJ.B. GhazaliW.S.W. MohamedM. Anti-atherogenic effects of orlistat on obesity-induced vascular oxidative stress rat model.Antioxidants202110225110.3390/antiox10020251 33562069
    [Google Scholar]
  20. PanahipourL. TabatabaeiA.A. GruberR. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula.J. Dairy Sci.202010386771678110.3168/jds.2019‑18067 32505409
    [Google Scholar]
  21. KedongH. WangD. SagaramM. AnH.S. CheeA. Anti-inflammatory effects of interleukin-4 on intervertebral disc cells.Spine J.2020201606810.1016/j.spinee.2019.06.025 31265894
    [Google Scholar]
  22. ChoiK.H. SongY.B. LeeJ.M. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in patients undergoing complex procedures.JACC Cardiovasc. Interv.201912760762010.1016/j.jcin.2019.01.227 30878474
    [Google Scholar]
  23. LiX. GuoD. HuY. ChenY. Evaluation of oxidative status in elderly patients with multiple cerebral infarctions and multiple chronic total coronary occlusions.Dis. Markers2022202211110.1155/2022/2083990 35801004
    [Google Scholar]
  24. GrodeckiK. CadetS. StaruchA.D. Noncalcified plaque burden quantified from coronary computed tomography angiography improves prediction of side branch occlusion after main vessel stenting in bifurcation lesions: results from the CT-PRECISION registry.Clin. Res. Cardiol.2021110111412310.1007/s00392‑020‑01658‑1 32385529
    [Google Scholar]
  25. LeeD.H. ThiruvengadamS.K. MohammedM. Efficacy of coronary computed tomography angiography for the de novo detection of chronic total occlusion prior to coronary angiography: A preliminary and retrospective study.Int. J. Angiol.202029422322810.1055/s‑0040‑1716328 33268972
    [Google Scholar]
  26. López-PalopR. CarrilloP. CorderoA. Effect of lesion length on functional significance of intermediate long coronary lesions.Catheter. Cardiovasc. Interv.2013814E186E19410.1002/ccd.24459 22511556
    [Google Scholar]
  27. RzeszutkoŁ. SiudakZ. TokarekT. Twelve months clinical outcome after bioresorbable vascular scaffold implantation in patients with stable angina and acute coronary syndrome.Postepy Kardiol. Interwencyjnej20162210811510.5114/aic.2016.59360 27279869
    [Google Scholar]
  28. TomoiY. SogaY. OkazakiJ. Drug-coated stent implantation vs. bypass surgery for in-stent occlusion after femoropopliteal stenting.Heart Vessels202136564665310.1007/s00380‑020‑01740‑8 33392645
    [Google Scholar]
  29. RagostaM. Left main coronary artery disease: Importance, diagnosis, assessment, and management.Curr. Probl. Cardiol.20154039312610.1016/j.cpcardiol.2014.11.003 25765453
    [Google Scholar]
  30. TemovK. SunZ. Coronary computed tomography angiography investigation of the association between left main coronary artery bifurcation angle and risk factors of coronary artery disease.Int. J. Cardiovasc. Imaging201632S1Suppl. 112913710.1007/s10554‑016‑0884‑2 27076223
    [Google Scholar]
  31. ZhouY.X. HanW.W. SongD.D. Effect of miR-10a on sepsis-induced liver injury in rats through TGF-β1/Smad signaling pathway.Eur. Rev. Med. Pharmacol. Sci.202024286210.26355/eurrev202001_20070
    [Google Scholar]
  32. Sáenz-MedinaJ. MartinezM. RosadoS. DuránM. PrietoD. CarballidoJ. Urolithiasis develops endothelial dysfunction as a clinical feature.Antioxidants202110572210.3390/antiox10050722 34064366
    [Google Scholar]
  33. AggarwalR. JainA.K. MittalP. KohliM. JawanjalP. RathG. Association of pro‐ and anti‐inflammatory cytokines in preeclampsia.J. Clin. Lab. Anal.2019334e2283410.1002/jcla.22834 30666720
    [Google Scholar]
  34. LiuJ. GaoL. ZangD. Elevated levels of IFN-γ in CSF and serum of patients with amyotrophic lateral sclerosis.PLoS One2015109e013693710.1371/journal.pone.0136937 26332465
    [Google Scholar]
  35. AsadiS. RahimiZ. SaidijamM. ShababN. GoodarziM.T. Effects of resveratrol on FOXO1 and FOXO3 a genes expression in adipose tissue, serum insulin, insulin resistance and serum SOD activity in type 2 diabetic rats.Int. J. Mol. Cell. Med.20187317618410.22088/IJMCM.BUMS.7.3.176 31565649
    [Google Scholar]
  36. YaghoubiN. YoussefiM. Jabbari AzadF. FarzadF. YavariZ. Zahedi AvvalF. Total antioxidant capacity as a marker of severity of COVID‐19 infection: Possible prognostic and therapeutic clinical application.J. Med. Virol.20229441558156510.1002/jmv.27500 34862613
    [Google Scholar]
  37. KhanS.A. JoyceJ. TsudaT. Quantification of active and total transforming growth factor-β levels in serum and solid organ tissues by bioassay.BMC Res. Notes20125163610.1186/1756‑0500‑5‑636 23151377
    [Google Scholar]
  38. EiniP. MajzoobiM.M. Ghasemi BasirH.R. MoosaviZ. MoradiA. Comparison of the serum level of interleukin‐4 in patients with brucellosis and healthy controls.J. Clin. Lab. Anal.2020347e2326710.1002/jcla.23267 32100374
    [Google Scholar]
  39. NegliaD. RovaiD. CaselliC. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging.Circ. Cardiovasc. Imaging201583e00217910.1161/CIRCIMAGING.114.002179 25711274
    [Google Scholar]
  40. PriceR.S. KasnerS.E. Hypertension and hypertensive encephalopathy.Handb. Clin. Neurol.201411916116710.1016/B978‑0‑7020‑4086‑3.00012‑6 24365295
    [Google Scholar]
  41. EisenA. HarringtonR.A. StoneG.W. Cangrelor compared with clopidogrel in patients with prior myocardial infarction: Insights from the CHAMPION trials.Int. J. Cardiol.2018250495510.1016/j.ijcard.2017.10.006 29030140
    [Google Scholar]
  42. RealA. UkoguC. KrishnamoorthyD. Elevated glycohemoglobin HbA1c is associated with low back pain in nonoverweight diabetics.Spine J.201919222523110.1016/j.spinee.2018.05.035 29859349
    [Google Scholar]
  43. KlonerR.A. ChaitmanB. Angina and its management.J. Cardiovasc. Pharmacol. Ther.201722319920910.1177/1074248416679733 28196437
    [Google Scholar]
  44. SongnuyT. ScholandS.J. PanprayoonS. Effects of tobacco smoke on aeroallergen sensitization and clinical severity among university students and staff with allergic rhinitis.J. Environ. Public Health202020201710.1155/2020/1692930 33101424
    [Google Scholar]
  45. LiangJ. OlsenR.W. Alcohol use disorders and current pharmacological therapies: The role of GABAA receptors.Acta Pharmacol. Sin.201435898199310.1038/aps.2014.50 25066321
    [Google Scholar]
  46. DuvalC. MüllerM. KerstenS. PPARα and dyslipidemia.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20071771896197110.1016/j.bbalip.2007.05.003 17604218
    [Google Scholar]
  47. ChengX.M. HuY.Y. YangT. WuN. WangX.N. Reactive oxygen species and oxidative tress in vascular-related diseases.Oxid. Med. Cell. Longev.2022202211110.1155/2022/7906091 35419169
    [Google Scholar]
  48. HameisterR. KaurC. DheenS.T. LohmannC.H. SinghG. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty.J. Biomed. Mater. Res. B Appl. Biomater.202010852073208710.1002/jbm.b.34546 31898397
    [Google Scholar]
  49. BuczyńskaA. SidorkiewiczI. RoguckiM. Oxidative stress and radioiodine treatment of differentiated thyroid cancer.Sci. Rep.20211111712610.1038/s41598‑021‑96637‑5 34429481
    [Google Scholar]
  50. CapuzziE. OssolaP. CaldiroliA. AuxiliaA.M. BuoliM. Malondialdehyde as a candidate biomarker for bipolar disorder: A meta-analysis.Prog. Neuropsychopharmacol. Biol. Psychiatry202211311046910.1016/j.pnpbp.2021.110469 34740710
    [Google Scholar]
  51. JelicM.D. MandicA.D. MaricicS.M. SrdjenovicB.U. Oxidative stress and its role in cancer.J. Cancer Res. Ther.2021171222810.4103/jcrt.JCRT_862_16 33723127
    [Google Scholar]
  52. CalvaniN.E.D. De Marco VerissimoC. JewhurstH.L. CwiklinskiK. FlausA. DaltonJ.P. Two distinct superoxidase dismutases (SOD) secreted by the helminth parasite Fasciola hepatica play roles in defence against metabolic and host immune cell-derived reactive oxygen species (ROS) during growth and development.Antioxidants20221110196810.3390/antiox11101968 36290692
    [Google Scholar]
  53. PudlarzA.M. Ranoszek-SoliwodaK. CzechowskaE. A study of the activity of recombinant mn-superoxide dismutase in the presence of gold and silver nanoparticles.Appl. Biochem. Biotechnol.201918741551156810.1007/s12010‑018‑2896‑y 30284207
    [Google Scholar]
  54. MusazadehV. JafarzadehJ. KeramatiM. Flaxseed oil supplementation augments antioxidant capacity and alleviates oxidative stress: A systematic review and meta-analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/4438613 34527059
    [Google Scholar]
  55. ÇalapkorurS. BesagilP.S. ŞahinH. Determination of the relationship between total antioxidant capacity and dietary antioxidant intake in obese patients.Niger. J. Clin. Pract.202023448148810.4103/njcp.njcp_212_19 32246654
    [Google Scholar]
  56. XueY. ZengX. TuW.J. ZhaoJ. Tumor necrosis factor- α: The next marker of stroke.Dis. Markers202220221810.1155/2022/2395269 35265224
    [Google Scholar]
  57. ZelováH. HošekJ. TNF-α signalling and inflammation: Interactions between old acquaintances.Inflamm. Res.201362764165110.1007/s00011‑013‑0633‑0 23685857
    [Google Scholar]
  58. KannO. AlmouhannaF. ChausseB. Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration.Trends Neurosci.2022451291392710.1016/j.tins.2022.10.007 36283867
    [Google Scholar]
  59. KarkiR. SharmaB.R. TuladharS. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes.Cell20211841149168.e1710.1016/j.cell.2020.11.025 33278357
    [Google Scholar]
  60. HuoR. TianX. ChangQ. Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β 1.Ther. Adv. Respir. Dis.202115175346662098185810.1177/1753466620981858 33530899
    [Google Scholar]
  61. FerreiraR.R. WaghabiM.C. BaillyS. The search for biomarkers and treatments in chagas disease: Insights from TGF-beta studies and immunogenetics.Front. Cell. Infect. Microbiol.20221176757610.3389/fcimb.2021.767576 35186778
    [Google Scholar]
  62. LutgensE. GijbelsM. SmookM. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression.Arterioscler. Thromb. Vasc. Biol.200222697598210.1161/01.ATV.0000019729.39500.2F 12067907
    [Google Scholar]
  63. JiZ. JiangX. LiY. SongJ. ChaiC. LuX. Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin 4.Exp. Ther. Med.202020614810.3892/etm.2020.9277 33093886
    [Google Scholar]
  64. DasekeM.J.II Tenkorang-ImpraimM.A.A. MaY. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction.J. Mol. Cell. Cardiol.202014511212110.1016/j.yjmcc.2020.06.006 32574573
    [Google Scholar]
  65. AmaralE.P. VinhaesC.L. Oliveira-de-SouzaD. NogueiraB. AkramiK.M. AndradeB.B. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis.Antioxid. Redox Signal.202134647148510.1089/ars.2020.8124 32559410
    [Google Scholar]
  66. DharshiniL.C.P. RasmiR.R. KathirvelanC. KumarK.M. SaradhadeviK.M. SakthivelK.M. Regulatory components of oxidative stress and inflammation and their complex interplay in carcinogenesis.Appl. Biochem. Biotechnol.202319552893291610.1007/s12010‑022‑04266‑z 36441404
    [Google Scholar]
  67. ValléeA. Neuroinflammation in schizophrenia: The key role of the WNT/β-catenin pathway.Int. J. Mol. Sci.2022235281010.3390/ijms23052810 35269952
    [Google Scholar]
  68. VorpahlM. VirmaniR. LadichE. FinnA.V. Vascular remodeling after coronary stent implantation.Minerva Cardioangiol.200957562162810.3390/ijms23052810 19838152
    [Google Scholar]
  69. ShiP. JiH. ZhangH. YangJ. GuoR. WangJ. circANRIL reduces vascular endothelial injury, oxidative stress and inflammation in rats with coronary atherosclerosis.Exp. Ther. Med.20202032245225110.3892/etm.2020.8956 32765701
    [Google Scholar]
  70. AssarD.H. ElhabashiN. MokhbatlyA.A.A. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences.Biomed. Pharmacother.202114311215110.1016/j.biopha.2021.112151 34507115
    [Google Scholar]
  71. HuangH. SaddalaM.S. LennikovA. MukwayaA. FanL. RNA-Seq reveals placental growth factor regulates the human retinal endothelial cell barrier integrity by transforming growth factor (TGF-β) signaling.Mol. Cell. Biochem.20204751-29310610.1007/s11010‑020‑03862‑z 32813141
    [Google Scholar]
  72. ChleilatE. PetheA. PfeiferD. KrieglsteinK. RoussaE. TGF-β signaling regulates SLC8A3 expression and prevents oxidative stress in developing midbrain dopaminergic and dorsal raphe serotonergic neurons.Int. J. Mol. Sci.2020218273510.3390/ijms21082735 32326436
    [Google Scholar]
  73. BasaranogluM. BasaranogluG. SentürkH. From fatty liver to fibrosis: A tale of “second hit”.World J. Gastroenterol.20131981158116510.3748/wjg.v19.i8.1158 23483818
    [Google Scholar]
  74. NiB. ShenH. WangW. LuH. JiangL. TGF-β1 reduces the oxidative stress-induced autophagy and apoptosis in rat annulus fibrosus cells through the ERK signaling pathway.J. Orthop. Surg. Res.201914124110.1186/s13018‑019‑1260‑4 31358027
    [Google Scholar]
  75. CutoloM. CampitielloR. GotelliE. SoldanoS. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis.Front. Immunol.20221386726010.3389/fimmu.2022.867260 35663975
    [Google Scholar]
  76. Prud’hommeG.J. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations.Lab. Invest.200787111077109110.1038/labinvest.3700669 17724448
    [Google Scholar]
  77. SzondyZ. SarangZ. KissB. GarabucziÉ. KöröskényiK. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance.Front. Immunol.2017890910.3389/fimmu.2017.00909 28824635
    [Google Scholar]
  78. JimiS. JaguparovA. NurkeshA. SultankulovB. SaparovA. Sequential delivery of cryogel released growth factors and cytokines accelerates wound healing and improves tissue regeneration.Front. Bioeng. Biotechnol.2020834510.3389/fbioe.2020.00345 32426341
    [Google Scholar]
  79. FrangogiannisN.G. The inflammatory response in myocardial injury, repair, and remodelling.Nat. Rev. Cardiol.201411525526510.1038/nrcardio.2014.28 24663091
    [Google Scholar]
  80. FrangogiannisN.G. Transforming growth factor-β in myocardial disease.Nat. Rev. Cardiol.202219743545510.1038/s41569‑021‑00646‑w 34983937
    [Google Scholar]
  81. JiaM. LiQ. GuoJ. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation.Circ. Res.202213071038105510.1161/CIRCRESAHA.121.319540 35196865
    [Google Scholar]
  82. HarveyE. RamjiD. Interferon-γ and atherosclerosis: Pro- or anti-atherogenic?Cardiovasc. Res.2005671112010.1016/j.cardiores.2005.04.019 15907820
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611323165250211045917
Loading
/content/journals/cvp/10.2174/0115701611323165250211045917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test