Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Introduction

The global COVID-19 vaccination campaign has significantly reduced severe illness and mortality; however, emerging evidence raises concerns regarding its potential cardiovascular effects, particularly myocardial infarction (MI).

Methods

This study investigates the relationship between COVID-19 vaccination and MI incidence among first-time MI patients in Saudi Arabia. Post-COVID-19 vaccination within six months post-vaccination accounted for potential confounding factors, such as pre-existing health conditions, age, and lifestyle. A total of 102 MI patients, with a male predominance of 60.8% and a significant correlation with middle age, were analysed. A+ blood group patients were the most prevalent (33.3%), followed by B+ (29.4%), while Rh-negative patients constituted only 7.8%. Elevated mean BNP (761.98 pg/ml), pulse rate (87.72 bpm), and systolic blood pressure (139.98 mmHg) indicated heightened cardiac stress (p < 0.01).

Results

Significant elevations in AST (121.65 U/L) and ALT (133.63 U/L) levels suggested liver stress post-Covid-19 vaccination (p < 0.01). Males had higher AST, ALT, and bilirubin levels than females, with p-values of 0.02, 0.01, and 0.04, respectively, indicating hepatic differences. Elevated biomarkers like CK-MB (58.05 IU/L) and CPK (313.86 mcg/L) further affirmed significant myocardial damage post-vaccination (p < 0.05).

Conclusion

These findings suggest a link between vaccination and cardiovascular events and highlight the importance of considering individual health profiles in evaluating vaccine safety, cardiovascular health, and hepatic implications.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611362338250214103331
2025-11-01
2025-12-02
Loading full text...

Full text loading...

References

  1. AlqahtaniT.M.M. Ali AlghamdiM.A. Rafi BaigM. Recent patterns and assessment of long-term complications following SARS-CoV-2 infection and vaccination in the context of diabet es prevalence among blood donors.Curr. Diabetes Rev.2024209e11012422552010.2174/0115733998274390231110050809 38415496
    [Google Scholar]
  2. RazzaqueM.S. Can adverse cardiac events of the COVID-19 vaccine exacerbate preexisting diseases?Expert Rev. Anti Infect. Ther.202422413113710.1080/14787210.2024.2311837 38284355
    [Google Scholar]
  3. Cruz RodriguezJ.B. LangeR.A. MukherjeeD. Gamut of cardiac manifestations and complications of COVID-19: A contemporary review.J. Investig. Med.20206881334134010.1136/jim‑2020‑001592 33077488
    [Google Scholar]
  4. BlascoA. RoyuelaA. García-GómezS. Association of SARS-CoV-2 immunoserology and vaccination status with myocardial infarction severity and outcome.Vaccine2024422612630510.1016/j.vaccine.2024.126305 39244425
    [Google Scholar]
  5. ElizaldeM.U. EguinoaF.J.G. de las HuertasA.G.L. Jiménez-GonzálezM. RamírezE. Myocarditis and pericarditis risk with mRNA COVID-19 vaccination compared to unvaccinated individuals: A retrospective cohort study in a Spanish Tertiary Hospital.Biomed. Pharmacother.202417111618110.1016/j.biopha.2024.116181 38262150
    [Google Scholar]
  6. KellerK. SagoschenI. KonstantinidesS. GoriT. MünzelT. HobohmL. Incidence and risk factors of myocarditis in hospitalized patients with COVID‐19.J. Med. Virol.2023953e2864610.1002/jmv.28646 36892180
    [Google Scholar]
  7. RodriguezJ.J. MunozO.C. Porres-AguilarM. MukherjeeD. Thromboembolic complications in severe COVID-19: Current antithrombotic strategies and future perspectives.Cardiovasc. Hematol. Disord. Drug Targets2021211232910.2174/1871529X21666210315123347 33719953
    [Google Scholar]
  8. HalmansL. VenhorstA. KlemisV. Immune response to COVID-19 vaccination in elite athletes.Exerc. Immunol. Rev.2024306370 39094182
    [Google Scholar]
  9. McGonagleD. GiryesS. Immunology of coronary atherosclerosis and unexplained sudden death in the COVID-19 era.Autoimmun. Rev.202410364210.1016/j.autrev.2024.103642 39313122
    [Google Scholar]
  10. LiY. CaoG. JingW. LiuJ. LiuM. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990−2019: Findings from 2019 global burden of disease study.Eur. J. Prev. Cardiol.202330327628610.1093/eurjpc/zwac285 36458973
    [Google Scholar]
  11. GaidaiO. CaoY. LoginovS. Global cardiovascular diseases death rate prediction.Curr. Probl. Cardiol.202348510162210.1016/j.cpcardiol.2023.101622 36724816
    [Google Scholar]
  12. GhamdiF.A. NaqviS. AlabassiF.A. Alterations in clinical characteristics of blood donors post COVID-19 recovery.Curr. Pharm. Des.2022281298199210.2174/1381612828666220322123225 35319357
    [Google Scholar]
  13. LiJ. LiW. LiL. YangS. ZhaoG. LiK. Association between blood groups and myocardial injury after non-cardiac surgery: A retrospective cohort study.Sci. Rep.20241411402810.1038/s41598‑024‑61546‑w 38890319
    [Google Scholar]
  14. LilovaZ. HassanF. RiazM. Blood group and ischemic stroke, myocardial infarction, and peripheral vascular disease: A meta-analysis of over 145,000 cases and 2,000,000 controls.J. Stroke Cerebrovasc. Dis.202332810721510.1016/j.jstrokecerebrovasdis.2023.107215 37336185
    [Google Scholar]
  15. SchwarzingerM. WatsonV. ArwidsonP. AllaF. LuchiniS. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics.Lancet Public Health202164e210e22110.1016/S2468‑2667(21)00012‑8 33556325
    [Google Scholar]
  16. ArenaR. PronkN.P. KottkeT.E. WoodardC. The lifestyle health index in the context of COVID-19 mortality and vaccination in the United States: A syndemic not to be repeated.Curr. Probl. Cardiol.202449910272810.1016/j.cpcardiol.2024.102728 38944225
    [Google Scholar]
  17. MarcecR. LikicR. Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines.Postgrad. Med. J.202298116154455010.1136/postgradmedj‑2021‑140685 34373343
    [Google Scholar]
  18. HanaD. PatelK. RomanS. GattasB. SofkaS. Clinical cardiovascular adverse events reported post-COVID-19 vaccination: Are they a real risk?Curr. Probl. Cardiol.202247310107710.1016/j.cpcardiol.2021.101077 34902392
    [Google Scholar]
  19. RahmanN. AliM.H. SawhneyA. VyasA. GuptaR. Cardiac manifestations of COVID-19: An overview. In: Management, Body Systems, and Case Studies in COVID-19. Academic Press 2024193112310.1016/B978‑0‑443‑18703‑2.00034‑7
    [Google Scholar]
  20. Webb HooperM. NápolesA.M. Pérez-StableE.J. COVID-19 and racial/ethnic disparities.JAMA2020323242466246710.1001/jama.2020.8598 32391864
    [Google Scholar]
  21. Lima Dos SantosC.C. MatharooA.S. Pinzón CuevaE. The influence of sex, age, and race on coronary artery disease: A narrative review.Cureus20231510e4779910.7759/cureus.47799 38021526
    [Google Scholar]
  22. HrycekE. Walawska-HrycekA. MilewskiK. NowakowskiP. BuszmanP. ŻurakowskiA. The influence of SARS-CoV-2 vaccination on the mortality and outcomes of patients with both myocardial infarction and COVID-19.Vaccines 202412998310.3390/vaccines12090983 39340015
    [Google Scholar]
  23. ElumalaiK SrinivasanS ShanmugamA. Impact of COVID-19 vaccines on liver function: A state of the art and challenges for healthcare providers. Gastrointest Endosc.2024214251
    [Google Scholar]
  24. NeshatS. RezaeiA. FaridA. Cardiovascular diseases risk predictors: ABO blood groups in a different role.Cardiol. Rev.202432217417910.1097/CRD.0000000000000463 35679024
    [Google Scholar]
  25. ReddyP.K.M. KumarS. BirajdarA.V. SyedI. SrinivasR. The significance of von willebrand factor antigen levels in predicting the severity of coronary artery disease in patients with ST-Segment elevation myocardial infarction.IJCC202453237242
    [Google Scholar]
  26. SmithD.R. LimS.T. MurphyS.J.X. von Willebrand factor antigen, von Willebrand factor propeptide and ADAMTS13 activity in TIA or ischaemic stroke patients changing antiplatelet therapy.J. Neurol. Sci.202446312311810.1016/j.jns.2024.123118 39024743
    [Google Scholar]
  27. CheonE.J. OhJ.S. Hemolytic anemia associated with intravenous immunoglobulin in Kawasaki disease.BMC Pediatr.20242416910.1186/s12887‑024‑04546‑z 38245705
    [Google Scholar]
  28. ConradN. MolenberghsG. VerbekeG. Trends in cardiovascular disease incidence among 22 million people in the UK over 20 years: Population based study.BMJ2024385e078523
    [Google Scholar]
  29. JanssenH. KoekkoekL.L. SwirskiF.K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease.Nat. Rev. Cardiol.202421315716910.1038/s41569‑023‑00931‑w 37752350
    [Google Scholar]
  30. de FrelD.L. AtsmaD.E. PijlH. The impact of obesity and lifestyle on the immune system and susceptibility to infections such as COVID-19.Front. Nutr.2020759760010.3389/fnut.2020.597600 33330597
    [Google Scholar]
  31. LowryM.T.H. DoudesisD. WereskiR. Influence of age on the diagnosis of myocardial infarction.Circulation2022146151135114810.1161/CIRCULATIONAHA.122.059994 36106552
    [Google Scholar]
  32. NorouzzadehM. TeymooriF. FarhadnejadH. The interaction between diet quality and cigarette smoking on the incidence of hypertension, stroke, cardiovascular diseases, and all-cause mortality.Sci. Rep.20241411237110.1038/s41598‑024‑62616‑9 38811588
    [Google Scholar]
  33. AlqahtaniB.A. AlenaziA.M. A national perspective on cardiovascular diseases in Saudi Arabia.BMC Cardiovasc. Disord.202424118410.1186/s12872‑024‑03845‑8 38539109
    [Google Scholar]
  34. Al-KhlaiwiT. HabibS.S. BayoumyN. Al-KhliwiH. MeoS.A. Identifying risk factors and mortality rate of premature coronary artery disease in young Saudi population.Sci. Rep.20241411272710.1038/s41598‑024‑62970‑8 38830947
    [Google Scholar]
  35. YangW.Y. NguyenB. WuS. Editorial: Highlights for cardiovascular therapeutics in 2021 – Trained immunity, immunometabolism, gender differences of cardiovascular diseases, and novel targets of cardiovascular therapeutics.Front. Cardiovasc. Med.20229892288
    [Google Scholar]
  36. Koubaa-GhorbelF. ChaâbaneM. JdidiH. TurkiM. Makni-AyadiF. El FekiA. Salvia officinalis mitigates uterus and liver damages induced by an estrogen deficiency in ovariectomized rats.J. Food Biochem.2021455e1354210.1111/jfbc.13542 33124046
    [Google Scholar]
  37. Er-LukowiakM. HänzelmannS. RotheM. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis.Front. Immunol.202314127924510.3389/fimmu.2023.1279245 38179044
    [Google Scholar]
  38. DunnS.E. PerryW.A. KleinS.L. Mechanisms and consequences of sex differences in immune responses.Nat. Rev. Nephrol.2024201375510.1038/s41581‑023‑00787‑w 37993681
    [Google Scholar]
  39. Kasztelan-SzczerbińskaB. SurdackaA. CelińskiK. Prognostic significance of the systemic inflammatory and immune balance in alcoholic liver disease with a focus on gender-related differences.PLoS One2015106e012834710.1371/journal.pone.0128347 26107937
    [Google Scholar]
  40. ZaherK. BasingabF. AlrahimiJ. BasahelK. AldahlawiA. Gender differences in response to COVID-19 infection and vaccination.Biomedicines2023116167710.3390/biomedicines11061677 37371774
    [Google Scholar]
  41. RosendeA. DiPetteD.J. MartinezR. HEARTS in the Americas clinical pathway. Strengthening the decision support system to improve hypertension and cardiovascular disease risk management in primary care settings.Front. Cardiovasc. Med.202310110248210.3389/fcvm.2023.1102482 37180772
    [Google Scholar]
  42. AkhtarZ. TrentM. MoaA. TanT.C. FröbertO. MacIntyreC.R. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes.Eur. Heart J. Suppl.202325Suppl. AA42A4910.1093/eurheartjsupp/suac123 36937372
    [Google Scholar]
  43. AltmanN.L. BerningA.A. MannS.C. Vaccination-associated myocarditis and myocardial injury.Circ. Res.2023132101338135710.1161/CIRCRESAHA.122.321881 37167355
    [Google Scholar]
  44. ChenY. ZhouX. ChenZ. The use of high-sensitivity cardiac troponin T and creatinine kinase-MB as a prognostic markers in patients with acute myocardial infarction and chronic kidney disease.Ren. Fail.2023451222042010.1080/0886022X.2023.2220420 37278148
    [Google Scholar]
  45. BanerjeeP. GaddamN. ChandlerV. ChakrabortyS. Oxidative stress-induced liver damage and remodeling of the liver vasculature.Am. J. Pathol.2023193101400141410.1016/j.ajpath.2023.06.002 37355037
    [Google Scholar]
  46. CrisciG. BobbioE. GentileP. Biomarkers in acute myocarditis and chronic inflammatory cardiomyopathy: An updated review of the literature.J. Clin. Med.20231223721410.3390/jcm12237214 38068265
    [Google Scholar]
  47. ZoddaE. Tura-CeideO. MillsN.L. Autonomous metabolic reprogramming and oxidative stress characterize endothelial dysfunction in acute myocardial infarction.eLife202312e8626010.7554/eLife.86260 38014932
    [Google Scholar]
  48. BerberE. SumbriaD. KokkayaS. A metabolic blueprint of COVID-19 and long-term vaccine efficacy.Drug Metab. Pers. Ther.2023381152910.1515/dmpt‑2022‑0148 36166711
    [Google Scholar]
  49. EfeC. KulkarniA.V. Terziroli Beretta-PiccoliB. Liver injury after SARS‐CoV‐2 vaccination: Features of immune‐mediated hepatitis, role of corticosteroid therapy and outcome.Hepatology20227661576158610.1002/hep.32572 35567545
    [Google Scholar]
  50. LalaV. ZubairM. MinterD. Liver function tests.Stat Pearls2023
    [Google Scholar]
  51. NakaferoG. GraingeM.J. CardT. MallenC.D. Nguyen Van-TamJ.S. AbhishekA. Effectiveness of pneumococcal vaccination in adults with common immune-mediated inflammatory diseases in the UK: A case–control study.Lancet Rheumatol.202469e615e62410.1016/S2665‑9913(24)00128‑0 39067457
    [Google Scholar]
  52. LeeS. LeeJ. ChoS.H. Assessing the impact of mRNA vaccination in chronic inflammatory murine model.NPJ Vaccines2024913410.1038/s41541‑024‑00825‑z 38360752
    [Google Scholar]
  53. van DorstM.M.A.R. PyuzaJ.J. NkurunungiG. Immunological factors linked to geographical variation in vaccine responses.Nat. Rev. Immunol.202424425026310.1038/s41577‑023‑00941‑2 37770632
    [Google Scholar]
  54. KashimuraM. Blood defense system – Proposal for a new concept of an immune system against blood borne pathogens comprising the liver, spleen and bone marrow.Scand. J. Immunol.2024995e1336310.1111/sji.13363 38605529
    [Google Scholar]
  55. KrishnaB.A. MetaxakiM. SitholeN. LandínP. MartínP. Salinas-BotránA. Cardiovascular disease and covid-19: A systematic review.Int. J. Cardiol. Heart Vasc.20245410148210.1016/j.ijcha.2024.101482 39189008
    [Google Scholar]
  56. BadmusO.O. da SilvaA.A. LiX. Cardiac lipotoxicity and fibrosis underlie impaired contractility in a mouse model of metabolic dysfunction‐associated steatotic liver disease.FASEB Bioadv.20246513114210.1096/fba.2023‑00139 38706754
    [Google Scholar]
  57. BaliA.D. RosenzveigA. FrishmanW.H. AronowW.S. Nonalcoholic fatty liver disease and cardiovascular disease: Causation or association.Cardiol. Rev.202432545346210.1097/CRD.0000000000000537 36825899
    [Google Scholar]
  58. RakoZ.A. YogeswaranA. YildizS. Liver stiffness is associated with right heart dysfunction, cardiohepatic syndrome, and prognosis in pulmonary hypertension.J. Heart Lung Transplant.20244371105111510.1016/j.healun.2024.02.013 38373557
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611362338250214103331
Loading
/content/journals/cvp/10.2174/0115701611362338250214103331
Loading

Data & Media loading...

Supplements

Supplementray material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test