Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Hereditary Hemorrhagic Telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a rare and inherited vascular disorder characterized by the development of arteriovenous malformations (AVMs) in various organs and telangiectasia (small AVM) in the mucocutaneous. The majority of HHT patients have haploinsufficiency of genes involved in the transforming growth factor-beta (TGF-β) signaling pathway, including endoglin (), activin receptor-like kinase 1 (, also known as ), or . Active angiogenesis is also required for telangiectasia and AVM development. Anti-angiogenic strategies have been tested in patients and animal models extensively. However, the exact mechanisms for telangiectasia and AVM development remain unclear. In this review, we discussed several important advances in the past 10 years in understanding HHT disease mechanisms and in therapeutic development.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611346772250122111526
2025-01-31
2025-11-14
Loading full text...

Full text loading...

References

  1. LabeyrieP.E. CourthéouxP. BabinE. BergotE. TouzéE. PelageJ.P. Neurological involvement in hereditary hemorrhagic telangiectasia.J. Neuroradiol.201643423624510.1016/j.neurad.2016.02.005 27059009
    [Google Scholar]
  2. de GussemE.M. KroonS. HosmanA.E. Hereditary hemorrhagic telangiectasia (HHT) and survival: The importance of systematic screening and treatment in HHT centers of excellence.J. Clin. Med.2020911358110.3390/jcm9113581 33172103
    [Google Scholar]
  3. ArthurH.M. RomanB.L. An update on preclinical models of hereditary haemorrhagic telangiectasia: Insights into disease mechanisms.Front. Med. (Lausanne)2022997396410.3389/fmed.2022.973964 36250069
    [Google Scholar]
  4. BalachandarS. GravesT.J. ShimontyA. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations.Am. J. Med. Genet. A.2022188395996410.1002/ajmg.a.62584 34904380
    [Google Scholar]
  5. FarhanA. YuanF. PartanE. WeissC.R. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5.Am. J. Med. Genet. A.2022188119920910.1002/ajmg.a.62522 34611981
    [Google Scholar]
  6. GuilhemA. Dupuis-GirodS. EspitiaO. Seven cases of hereditary haemorrhagic telangiectasia-like hepatic vascular abnormalities associated with EPHB4 pathogenic variants.J. Med. Genet.202360990590910.1136/jmg‑2022‑109107 36813543
    [Google Scholar]
  7. JiangX. Wooderchak-DonahueW.L. McDonaldJ. Inactivating mutations in Drosha mediate vascular abnormalities similar to hereditary hemorrhagic telangiectasia.Sci. Signal.201811513eaan683110.1126/scisignal.aan6831 29339534
    [Google Scholar]
  8. HataA. LagnaG. Deregulation of Drosha in the pathogenesis of hereditary hemorrhagic telangiectasia.Curr. Opin. Hematol.201926316116910.1097/MOH.0000000000000493 30855334
    [Google Scholar]
  9. CerdàP. CastilloS.D. AguileraC. New genetic drivers in hemorrhagic hereditary telangiectasia.Eur. J. Intern. Med.20241199910810.1016/j.ejim.2023.08.024 37689549
    [Google Scholar]
  10. KritharisA. Al-SamkariH. KuterD.J. Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist’s perspective.Haematologica201810391433144310.3324/haematol.2018.193003 29794143
    [Google Scholar]
  11. Al TaboshT. Al TarrassM. TourvieilheL. GuilhemA. Dupuis-GirodS. BaillyS. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances.J. Clin. Invest.20241344e17637910.1172/JCI176379 38357927
    [Google Scholar]
  12. BernabeuC. Bayrak-ToydemirP. McDonaldJ. LetarteM. Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia.J. Clin. Med.2020911357110.3390/jcm9113571 33167572
    [Google Scholar]
  13. KarlssonT. CherifH. Mutations in the ENG, ACVRL1, and SMAD4 genes and clinical manifestations of hereditary haemorrhagic telangiectasia: experience from the Center for Osler’s Disease, Uppsala University Hospital.Ups. J. Med. Sci.2018123315315710.1080/03009734.2018.1483452 30251589
    [Google Scholar]
  14. SnellingsD.A. GallioneC.J. ClarkD.S. VozorisN.T. FaughnanM.E. MarchukD.A. Somatic Mutations in Vascular Malformations of Hereditary Hemorrhagic Telangiectasia Result in Bi-allelic Loss of ENG or ACVRL1.Am. J. Hum. Genet.2019105589490610.1016/j.ajhg.2019.09.010 31630786
    [Google Scholar]
  15. WeakleyS.M. JiangJ. KougiasP. Role of somatic mutations in vascular disease formation.Expert Rev. Mol. Diagn.201010217318510.1586/erm.10.1 20214536
    [Google Scholar]
  16. MahmoudM. AllinsonK.R. ZhaiZ. Pathogenesis of arteriovenous malformations in the absence of endoglin.Circ. Res.201010681425143310.1161/CIRCRESAHA.109.211037 20224041
    [Google Scholar]
  17. SrinivasanS. HanesM.A. DickensT. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2.Hum. Mol. Genet.200312547348210.1093/hmg/ddg050 12588795
    [Google Scholar]
  18. BourdeauA. FaughnanM.E. LetarteM. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia.Trends Cardiovasc. Med.200010727928510.1016/S1050‑1738(01)00062‑7 11343967
    [Google Scholar]
  19. UrnessL.D. SorensenL.K. LiD.Y. Arteriovenous malformations in mice lacking activin receptor-like kinase-1.Nat. Genet.200026332833110.1038/81634 11062473
    [Google Scholar]
  20. SorensenL.K. BrookeB.S. LiD.Y. UrnessL.D. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor.Dev. Biol.2003261123525010.1016/S0012‑1606(03)00158‑1 12941632
    [Google Scholar]
  21. MiltonI. OuyangD. AllenC.J. Age-dependent lethality in novel transgenic mouse models of central nervous system arteriovenous malformations.Stroke20124351432143510.1161/STROKEAHA.111.647024 22328553
    [Google Scholar]
  22. ParkS.O. WankhedeM. LeeY.J. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia.J. Clin. Invest.2009119113487349610.1172/JCI39482 19805914
    [Google Scholar]
  23. ShaligramS.S. ZhangR. ZhuW. Bone marrow-derived alk1 mutant endothelial cells and clonally expanded somatic alk1 mutant endothelial cells contribute to the development of brain arteriovenous malformations in mice.Transl. Stroke Res.202213349450410.1007/s12975‑021‑00955‑9 34674144
    [Google Scholar]
  24. MorineK.J. QiaoX. ParuchuriV. Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling.Heart Vessels201732562863610.1007/s00380‑017‑0955‑x 28213819
    [Google Scholar]
  25. ParkS.O. LeeY.J. SekiT. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2.Blood2008111263364210.1182/blood‑2007‑08‑107359 17911384
    [Google Scholar]
  26. OhS.P. SekiT. GossK.A. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis.Proc. Natl. Acad. Sci. USA20009762626263110.1073/pnas.97.6.2626 10716993
    [Google Scholar]
  27. WalkerE.J. SuH. ShenF. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain.Stroke20124371925193010.1161/STROKEAHA.111.647982 22569934
    [Google Scholar]
  28. ChoiE.J. ChenW. JunK. ArthurH.M. YoungW.L. SuH. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.PLoS One201492e8851110.1371/journal.pone.0088511 24520391
    [Google Scholar]
  29. ChenW. SunZ. HanZ. De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation.Stroke201445390090210.1161/STROKEAHA.113.003655 24457293
    [Google Scholar]
  30. WalkerE.J. SuH. ShenF. Arteriovenous malformation in the adult mouse brain resembling the human disease.Ann. Neurol.201169695496210.1002/ana.22348 21437931
    [Google Scholar]
  31. MaL. ZhuX. TangC. CNS resident macrophages enhance dysfunctional angiogenesis and circulating monocytes infiltration in brain arteriovenous malformation.J. Cereb. Blood Flow Metab.202444692593710.1177/0271678X241236008 38415628
    [Google Scholar]
  32. RossiE. Sanz-RodriguezF. ElenoN. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration.Blood2013121240341510.1182/blood‑2012‑06‑435347 23074273
    [Google Scholar]
  33. ChenY. ZhuW. BollenA.W. Evidence of inflammatory cell involvement in brain arteriovenous malformations.Neurosurgery20086261340135010.1227/01.neu.0000333306.64683.b5 18825001
    [Google Scholar]
  34. SuH. TihanT. YoungW.L. Distinctive distribution of lymphocytes in unruptured and previously untreated brain arteriovenous malformation.Neuroimmunol. Neuroinflamm.20141314715210.4103/2347‑8659.143674 25568888
    [Google Scholar]
  35. MaL. GuoY. ZhaoY.L. SuH. The role of macrophage in the pathogenesis of brain arteriovenous malformation.Int. J. Hematol. Res.201512525610.17554/j.issn.2409‑3548.2015.01.12 26495437
    [Google Scholar]
  36. ChenW. GuoY. WalkerE.J. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain.Arterioscler. Thromb. Vasc. Biol.201333230531010.1161/ATVBAHA.112.300485 23241407
    [Google Scholar]
  37. ZhangR. HanZ. DegosV. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation.Angiogenesis201619445146110.1007/s10456‑016‑9519‑4 27325285
    [Google Scholar]
  38. van LaakeL.W. van den DriescheS. PostS. Endoglin has a crucial role in blood cell-mediated vascular repair.Circulation2006114212288229710.1161/CIRCULATIONAHA.106.639161 17088457
    [Google Scholar]
  39. PostS. SmitsA.M. van den BroekA.J. Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance.Cardiovasc. Res.201085349450210.1093/cvr/cvp313 19762327
    [Google Scholar]
  40. ShenF. DegosV. ChuP.L. Endoglin deficiency impairs stroke recovery.Stroke20144572101210610.1161/STROKEAHA.114.005115 24876084
    [Google Scholar]
  41. HanZ. ShaligramS. FaughnanM.E. ClarkD. SunZ. SuH. Reduction of endoglin receptor impairs mononuclear cell-migration.Exploration of. Medicine20201313614810.37349/emed.2020.00010 32954380
    [Google Scholar]
  42. DingenoutsC.K.E. GoumansM.J. BakkerW. Mononuclear cells and vascular repair in HHT.Front. Genet.2015611410.3389/fgene.2015.00114 25852751
    [Google Scholar]
  43. MeurerS.K. WeiskirchenR. Endoglin: An ‘accessory’ receptor regulating blood cell development and inflammation.Int. J. Mol. Sci.20202123924710.3390/ijms21239247 33287465
    [Google Scholar]
  44. Ojeda-FernándezL. Recio-PovedaL. AristorenaM. Mice lacking endoglin in macrophages show an impaired immune response.PLoS Genet.2016123e100593510.1371/journal.pgen.1005935 27010826
    [Google Scholar]
  45. ShabaniZ. SchuergerJ. ZhuX. Increased collagen I/collagen III ratio is associated with hemorrhage in brain arteriovenous malformations in human and mouse.Cells20241319210.3390/cells13010092 38201296
    [Google Scholar]
  46. ParkE.S. KimS. YaoD.C. Soluble endoglin stimulates inflammatory and angiogenic responses in microglia that are associated with endothelial dysfunction.Int. J. Mol. Sci.2022233122510.3390/ijms23031225 35163148
    [Google Scholar]
  47. GermansM.R. SunW. SebökM. KellerA. RegliL. Molecular signature of brain arteriovenous malformation hemorrhage: a systematic review.World Neurosurg.202215714315110.1016/j.wneu.2021.10.114 34687935
    [Google Scholar]
  48. NakamuraY. SugitaY. NakashimaS. Alternatively activated macrophages play an important role in vascular remodeling and hemorrhaging in patients with brain arteriovenous malformation.J. Stroke Cerebrovasc. Dis.201625360060910.1016/j.jstrokecerebrovasdis.2015.11.034 26725126
    [Google Scholar]
  49. GeisthoffU. NguyenH.L. LeferingR. MauneS. ThangaveluK. DroegeF. Trauma can induce telangiectases in hereditary hemorrhagic telangiectasia.J. Clin. Med.202095150710.3390/jcm9051507 32429545
    [Google Scholar]
  50. TilletE. BaillyS. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia.Front. Genet.2015545610.3389/fgene.2014.00456 25620979
    [Google Scholar]
  51. Wooderchak-DonahueW.L. McDonaldJ. O’FallonB. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia.Am. J. Hum. Genet.201393353053710.1016/j.ajhg.2013.07.004 23972370
    [Google Scholar]
  52. Desroches-CastanA. KocaD. LiuH. BMP9 is a key player in endothelial identity and its loss is sufficient to induce arteriovenous malformations.Cardiovasc. Res.2024120778279510.1093/cvr/cvae052 38502919
    [Google Scholar]
  53. DavidL. MalletC. MazerbourgS. FeigeJ.J. BaillyS. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells.Blood200710951953196110.1182/blood‑2006‑07‑034124 17068149
    [Google Scholar]
  54. ChenD. ZhaoM. MundyG.R. Bone morphogenetic proteins.Growth Factors200422423324110.1080/08977190412331279890 15621726
    [Google Scholar]
  55. LauxD.W. YoungS. DonovanJ.P. MansfieldC.J. UptonP.D. RomanB.L. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence.Development2013140163403341210.1242/dev.095307 23863480
    [Google Scholar]
  56. CapassoT.L. LiB. VolekH.J. BMP10-mediated ALK1 signaling is continuously required for vascular development and maintenance.Angiogenesis202023220322010.1007/s10456‑019‑09701‑0 31828546
    [Google Scholar]
  57. HataA. ChenY.G. TGF-β signaling from receptors to smads.Cold Spring Harb. Perspect. Biol.201689a02206110.1101/cshperspect.a022061 27449815
    [Google Scholar]
  58. LarrivéeB. PrahstC. GordonE. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.Dev. Cell201222348950010.1016/j.devcel.2012.02.005 22421041
    [Google Scholar]
  59. ChoiH. KimB.G. KimY.H. LeeS.J. LeeY.J. OhS.P. BMP10 functions independently from BMP9 for the development of a proper arteriovenous network.Angiogenesis202326116718610.1007/s10456‑022‑09859‑0 36348215
    [Google Scholar]
  60. BouvardC. TuL. RossiM. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10.Cardiovasc. Res.202211871805182010.1093/cvr/cvab187 34086873
    [Google Scholar]
  61. ChenH. Brady RidgwayJ. SaiT. Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development.Proc. Natl. Acad. Sci. USA201311029118871189210.1073/pnas.1306074110 23812757
    [Google Scholar]
  62. RicardN. CiaisD. LevetS. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling.Blood2012119256162617110.1182/blood‑2012‑01‑407593 22566602
    [Google Scholar]
  63. RuizS. ZhaoH. ChandakkarP. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10.Sci. Rep.2016613736610.1038/srep37366 27874028
    [Google Scholar]
  64. Al TaboshT. LiuH. KoçaD. Impact of heterozygous ALK1 mutations on the transcriptomic response to BMP9 and BMP10 in endothelial cells from hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension donors.Angiogenesis202427221122710.1007/s10456‑023‑09902‑8 38294582
    [Google Scholar]
  65. Al-SamkariH. VázquezC. Dupuis-GirodS. An international, multicenter study of intravenous bevacizumab for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-Bleed study.Haematologica202010682161216910.3324/haematol.2020.261859 32675221
    [Google Scholar]
  66. VillanuevaB. CerdàP. Torres-IglesiasR. Potential angiogenic biomarkers in hereditary hemorrhagic telangiectasia and other vascular diseases.Eur. J. Intern. Med.2023115101710.1016/j.ejim.2023.05.020 37225595
    [Google Scholar]
  67. MusterR. KoN. SmithW. Proof-of-concept single-arm trial of bevacizumab therapy for brain arteriovenous malformation.BMJ Neurology. Open202131e00011410.1136/bmjno‑2020‑000114 34189463
    [Google Scholar]
  68. WhiteheadK.J. SautterN.B. McWilliamsJ.P. Effect of topical intranasal therapy on epistaxis frequency in patients with Hereditary Hemorrhagic Telangiectasia: a randomized clinical trial.JAMA2016316994395110.1001/jama.2016.11724 27599329
    [Google Scholar]
  69. Dupuis-GirodS. AmbrunA. DecullierE. Effect of bevacizumab nasal spray on epistaxis duration in Hereditary Hemorrhagic Telangectasia: a randomized clinical trial.JAMA2016316993494210.1001/jama.2016.11387 27599328
    [Google Scholar]
  70. SadickH. SchäferE. WeissC. An in vitro study on the effect of bevacizumab on endothelial cell proliferation and VEGF concentration level in patients with hereditary hemorrhagic telangiectasia.Exp. Ther. Med.202224355510.3892/etm.2022.11493 35978926
    [Google Scholar]
  71. GaliatsatosP. WilsonC. O’BrienJ. A lack of race and ethnicity data in the treatment of hereditary hemorrhagic telangiectasia: a systematic review of intravenous bevacizumab efficacy.Orphanet J. Rare Dis.202217122010.1186/s13023‑022‑02371‑0 35698080
    [Google Scholar]
  72. MohrJ.P. ParidesM.K. StapfC. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial.Lancet2014383991761462110.1016/S0140‑6736(13)62302‑8 24268105
    [Google Scholar]
  73. Hwan KimY. VuP.N. ChoeS. Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia.Circ. Res.202012791122113710.1161/CIRCRESAHA.119.316267 32762495
    [Google Scholar]
  74. YadavA. LiangR. PressK. Evaluation of AAV capsids and delivery approaches for hereditary hemorrhagic telangiectasia gene therapy.Transl. Stroke Res.202440127510.1007/s12975‑024‑01275‑4 38977637
    [Google Scholar]
  75. SchmidC.D. OlsavszkyV. ReinhartM. ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver.Hepatology20237741211122710.1002/hep.32641 35776660
    [Google Scholar]
  76. RuizS. ChandakkarP. ZhaoH. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology.Hum. Mol. Genet.201726244786479810.1093/hmg/ddx358 28973643
    [Google Scholar]
  77. SommerN. DroegeF. GamenK.E. Treatment with low‐dose tacrolimus inhibits bleeding complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension.Pulm. Circ.2019921310.1177/2045894018805406 30260738
    [Google Scholar]
  78. HesselsJ. KroonS. BoermanS. Efficacy and safety of tacrolimus as treatment for bleeding caused by hereditary hemorrhagic telangiectasia: an open-label, pilot study.J. Clin. Med.20221118528010.3390/jcm11185280 36142926
    [Google Scholar]
  79. AlbiñanaV. Sanz-RodríguezF. Recio-PovedaL. BernabéuC. BotellaL.M. Immunosuppressor FK506 increases endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-β1 signaling in endothelial cells.Mol. Pharmacol.201179583384310.1124/mol.110.067447 21310938
    [Google Scholar]
  80. Álvarez-HernándezP. PatierJ.L. MarcosS. Tacrolimus as a promising drug for epistaxis and gastrointestinal bleeding in HHT.J. Clin. Med.20231223741010.3390/jcm12237410 38068462
    [Google Scholar]
  81. KilariS. WangY. SinghA. Neuropilin-1 deficiency in vascular smooth muscle cells is associated with hereditary hemorrhagic telangiectasia arteriovenous malformations.JCI Insight202279e15556510.1172/jci.insight.155565 35380991
    [Google Scholar]
  82. SullivanL.A. CarbonJ.G. RolandC.L. ToombsJ.E. Nyquist-AndersenM. KavlieA. R84, a novel therapeutic antibody against mouse and human VEGF with potent anti-tumor activity and limited toxicity induction.PLoS One201058e1203110.1371/journal.pone.0012031
    [Google Scholar]
  83. HanC. ChoeS. KimY.H. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2.Angiogenesis201417482383010.1007/s10456‑014‑9436‑3 24957885
    [Google Scholar]
  84. BoseP. HolterJ.L. SelbyG.B. Bevacizumab in hereditary hemorrhagic telangiectasia.N. Engl. J. Med.2009360202143214410.1056/NEJMc0901421 19439755
    [Google Scholar]
  85. OostingS. NagengastW. de VriesE. More on bevacizumab in hereditary hemorrhagic telangiectasia.N. Engl. J. Med.2009361993110.1056/NEJMc091271 19710496
    [Google Scholar]
  86. BrinkerhoffB.T. PoetkerD.M. ChoongN.W. Long-term therapy with bevacizumab in hereditary hemorrhagic telangiectasia.N. Engl. J. Med.2011364768868910.1056/NEJMc1012774 21323562
    [Google Scholar]
  87. SimonsM. EichmannA. “On-target” cardiac effects of anticancer drugs: lessons from new biology.J. Am. Coll. Cardiol.201260762662710.1016/j.jacc.2012.01.069 22703925
    [Google Scholar]
  88. LevitzkiA. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance.Annu. Rev. Pharmacol. Toxicol.201353116118510.1146/annurev‑pharmtox‑011112‑140341 23043437
    [Google Scholar]
  89. FaughnanM.E. GossageJ.R. ChakinalaM.M. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia.Angiogenesis201922114515510.1007/s10456‑018‑9646‑1 30191360
    [Google Scholar]
  90. MaestraggiQ. BouattourM. ToquetS. Bevacizumab to treat cholangiopathy in hereditary hemorrhagic telangiectasia: Be cautious: a case report.Medicine (Baltimore)20159446e196610.1097/MD.0000000000001966 26579805
    [Google Scholar]
  91. Dupuis-GirodS. GinonI. SaurinJ.C. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output.JAMA2012307994895510.1001/jama.2012.250 22396517
    [Google Scholar]
  92. DrabkinH. Pazopanib and anti-VEGF therapy.Open Access J. Urol.20102354010.2147/OAJU.S5896 24198612
    [Google Scholar]
  93. OrphanosG.S. IoannidisG.N. ArdavanisA.G. Cardiotoxicity induced by tyrosine kinase inhibitors.Acta Oncol.200948796497010.1080/02841860903229124 19734999
    [Google Scholar]
  94. KimY.H. KimM.J. ChoeS.W. SprecherD. LeeY.J.P. OhS. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia.J. Thromb. Haemost.20171561095110210.1111/jth.13683 28339142
    [Google Scholar]
  95. OlaR. DubracA. HanJ. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.Nat. Commun.2016711365010.1038/ncomms13650 27897192
    [Google Scholar]
  96. TanvetyanonT. MurtaghR. BeplerG. Rupture of a cerebral arteriovenous malformation in a patient treated with bevacizumab.J. Thorac. Oncol.20094226826910.1097/JTO.0b013e318195a642 19179909
    [Google Scholar]
  97. TabouretT. GregoryT. DhoogeM. Long term exposure to antiangiogenic therapy, bevacizumab, induces osteonecrosis.Invest. New Drugs20153351144114710.1007/s10637‑015‑0283‑x 26311072
    [Google Scholar]
  98. HiratsukaS. MinowaO. KunoJ. NodaT. ShibuyaM. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice.Proc. Natl. Acad. Sci. USA199895169349935410.1073/pnas.95.16.9349 9689083
    [Google Scholar]
  99. SawanoA. IwaiS. SakuraiY. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans.Blood200197378579110.1182/blood.V97.3.785 11157498
    [Google Scholar]
  100. NiidaS. KondoT. HiratsukaS. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice.Proc. Natl. Acad. Sci. USA200510239140161402110.1073/pnas.0503544102 16172397
    [Google Scholar]
  101. MaynardS.E. MinJ.Y. MerchanJ. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.J. Clin. Invest.2003111564965810.1172/JCI17189 12618519
    [Google Scholar]
  102. KimH. MarchukD.A. PawlikowskaL. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations.Acta Neurochir. Suppl. (Wien)200810519920610.1007/978‑3‑211‑09469‑3_38 19066109
    [Google Scholar]
  103. ChenW. ChoiE.J. McDougallC.M. SuH. Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets.Transl. Stroke Res.20145331632910.1007/s12975‑014‑0343‑0 24723256
    [Google Scholar]
  104. HadaczekP. EberlingJ.L. PivirottoP. BringasJ. ForsayethJ. BankiewiczK.S. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC.Mol. Ther.20101881458146110.1038/mt.2010.106 20531394
    [Google Scholar]
  105. KaplittM.G. LeoneP. SamulskiR.J. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain.Nat. Genet.19948214815410.1038/ng1094‑148 7842013
    [Google Scholar]
  106. RivièreC. DanosO. DouarA.M. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice.Gene Ther.200613171300130810.1038/sj.gt.3302766 16688207
    [Google Scholar]
  107. RiveraV.M. GaoG. GrantR.L. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer.Blood200510541424143010.1182/blood‑2004‑06‑2501 15507527
    [Google Scholar]
  108. RiveraV.M. YeX. CourageN.L. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer.Proc. Natl. Acad. Sci. USA199996158657866210.1073/pnas.96.15.8657 10411931
    [Google Scholar]
  109. KooT. OkadaT. AthanasopoulosT. FosterH. TakedaS. DicksonG. Long‐term functional adeno‐associated virus‐microdystrophin expression in the dystrophic CXMDj dog.J. Gene Med.201113949750610.1002/jgm.1602 22144143
    [Google Scholar]
  110. ZhuW. ShenF. MaoL. Soluble FLT1 gene therapy alleviates brain arteriovenous malformation severity.Stroke20174851420142310.1161/STROKEAHA.116.015713 28325846
    [Google Scholar]
  111. TabruynS.P. HansenS. Ojeda-FernándezM.L. MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells.Angiogenesis201316487788710.1007/s10456‑013‑9362‑9 23800974
    [Google Scholar]
  112. WatterstonC. ZengL. OnabadejoA. ChildsS.J. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling.PLoS Genet.2019155e100816310.1371/journal.pgen.1008163 31091229
    [Google Scholar]
  113. JonesK.J. SearlesC.D. Development of MicroRNA-based therapeutics for vascular disease.Circ. Res.202012791179118110.1161/CIRCRESAHA.120.317999 33031030
    [Google Scholar]
  114. Marín-RamosN.I. TheinT.Z. GhaghadaK.B. ChenT.C. GiannottaS.L. HofmanF.M. miR-18a inhibits BMP4 and HIF-1α normalizing brain arteriovenous malformations.Circ. Res.20201279e210e23110.1161/CIRCRESAHA.119.316317 32755283
    [Google Scholar]
  115. CristA.M. LeeA.R. PatelN.R. WesthoffD.E. MeadowsS.M. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of hereditary hemorrhagic telangiectasia.Angiogenesis201821236338010.1007/s10456‑018‑9602‑0 29460088
    [Google Scholar]
  116. CristA.M. ZhouX. GaraiJ. Angiopoietin-2 inhibition rescues arteriovenous malformation in a smad4 hereditary hemorrhagic telangiectasia mouse model.Circulation2019139172049206310.1161/CIRCULATIONAHA.118.036952 30744395
    [Google Scholar]
  117. ZhouX. PucelJ.C. Nomura-KitabayashiA. ANG2 blockade diminishes proangiogenic cerebrovascular defects associated with models of hereditary hemorrhagic telangiectasia.Arterioscler. Thromb. Vasc. Biol.20234381384140310.1161/ATVBAHA.123.319385 37288572
    [Google Scholar]
  118. Ojeda-FernandezL. BarriosL. Rodriguez-BarberoA. Recio-PovedaL. BernabeuC. BotellaL.M. Reduced plasma levels of Ang-2 and sEng as novel biomarkers in hereditary hemorrhagic telangiectasia (HHT).Clin. Chim. Acta20104117-849449910.1016/j.cca.2009.12.023 20067780
    [Google Scholar]
  119. Wetzel-StrongS.E. WeinsheimerS. NelsonJ. Pilot investigation of circulating angiogenic and inflammatory biomarkers associated with vascular malformations.Orphanet J. Rare Dis.202116137210.1186/s13023‑021‑02009‑7 34479577
    [Google Scholar]
  120. ArdeleanD.S. JerkicM. YinM. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment.Angiogenesis201417112914610.1007/s10456‑013‑9383‑4 24061911
    [Google Scholar]
  121. Fernandez-LopezA. Garrido-MartinE.M. Sanz-RodriguezF. Gene expression fingerprinting for human hereditary hemorrhagic telangiectasia.Hum. Mol. Genet.200716131515153310.1093/hmg/ddm069 17420163
    [Google Scholar]
  122. WinklerE.A. KimC.N. RossJ.M. A single-cell atlas of the normal and malformed human brain vasculature.Science20223756584eabi737710.1126/science.abi7377 35084939
    [Google Scholar]
  123. WälchliT. GhobrialM. SchwabM. TakadaS. ZhongH. SuntharalinghamS. Molecular atlas of the human brain vasculature at the single-cell level.bioRxiv20211846471510.1101/2021.10.18.464715
    [Google Scholar]
  124. GeisthoffU.W. NguyenH.L.P. HessD. Improvement in hereditary hemorrhagic telangiectasia after treatment with the phosphoinositide 3-kinase inhibitor BKM120.Ann. Hematol.201493470370410.1007/s00277‑013‑1845‑7 23892886
    [Google Scholar]
  125. RobertF. Desroches-CastanA. BaillyS. Dupuis-GirodS. FeigeJ.J. Future treatments for hereditary hemorrhagic telangiectasia.Orphanet J. Rare Dis.2020151410.1186/s13023‑019‑1281‑4 31910860
    [Google Scholar]
  126. Piha-PaulS.A. TaylorM.H. SpitzD. Efficacy and safety of buparlisib, a PI3K inhibitor, in patients with malignancies harboring a PI3K pathway activation: a phase 2, open-label, single-arm study.Oncotarget201910606526653510.18632/oncotarget.27251 31741715
    [Google Scholar]
  127. OlaR. HesselsJ. HammillA. Executive summary of the 14th HHT international scientific conference.Angiogenesis202326Suppl. 1273710.1007/s10456‑023‑09886‑5 37695357
    [Google Scholar]
  128. Viteri-NoëlA. González-GarcíaA. PatierJ.L. Hereditary hemorrhagic telangiectasia: genetics, pathophysiology, diagnosis, and management.J. Clin. Med.20221117524510.3390/jcm11175245 36079173
    [Google Scholar]
  129. Mei-ZahavM. GendlerY. BruckheimerE. Topical propranolol improves epistaxis control in hereditary hemorrhagic telangiectasia (HHT): a randomized double-blind placebo-controlled trial.J. Clin. Med.2020910313010.3390/jcm9103130 32998220
    [Google Scholar]
  130. AlbiñanaV. Giménez-GallegoG. García-MatoA. Topically applied etamsylate: a new orphan drug for HHT-derived epistaxis (antiangiogenesis through FGF pathway inhibition).TH Open201933e230e24310.1055/s‑0039‑1693710 31360828
    [Google Scholar]
  131. CunhaS.I. PietrasK. ALK1 as an emerging target for antiangiogenic therapy of cancer.Blood2011117266999700610.1182/blood‑2011‑01‑330142 21467543
    [Google Scholar]
  132. RuizS. ZhaoH. ChandakkarP. PapoinJ. ChoiH. Nomura-KitabayashiA. Sirolimus plus nintedanib treats vascular pathology in HHT mouse models.bioRxiv2019173914410.1101/739144
    [Google Scholar]
  133. Dupuis-GirodS. BaillyS. PlauchuH. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care.J. Thromb. Haemost.2010871447145610.1111/j.1538‑7836.2010.03860.x 20345718
    [Google Scholar]
  134. GenetG. GenetN. PailaU. Induced endothelial cell cycle arrest prevents arteriovenous malformations in hereditary hemorrhagic telangiectasia.Circulation20241491294496210.1161/CIRCULATIONAHA.122.062952 38126211
    [Google Scholar]
  135. JamesM. SehgalV.S. Pioneering the future: CRISPR-Cas9 gene therapy for hereditary hemorrhagic telangiectasia.Eur. J. Intern. Med.202412714014110.1016/j.ejim.2024.06.012 38879351
    [Google Scholar]
  136. KanterJ. WaltersM.C. KrishnamurtiL. Biologic and clinical efficacy of lentiglobin for sickle cell disease.N. Engl. J. Med.2022386761762810.1056/NEJMoa2117175 34898139
    [Google Scholar]
  137. FreundC. DavisR.P. GkatzisK. Ward-van OostwaardD. MummeryC.L. The first reported generation of human induced pluripotent stem cells (iPS cells) and iPS cell-derived cardiomyocytes in the Netherlands.Neth. Heart J.20101815154 20111645
    [Google Scholar]
  138. BoumaM.J. OrlovaV. van den HilF.E. Generation and genetic repair of 2 iPSC clones from a patient bearing a heterozygous c.1120del18 mutation in the ACVRL1 gene leading to hereditary hemorrhagic telangiectasia (HHT) type 2.Stem Cell Res. (Amst.)20204610178610.1016/j.scr.2020.101786 32485642
    [Google Scholar]
  139. ZhouF. ZhaoX. LiuX. Autologous correction in patient induced pluripotent stem cell‐endothelial cells to identify a novel pathogenic mutation of hereditary hemorrhagic telangiectasia.Pulm. Circ.202010411110.1177/2045894019885357 33282178
    [Google Scholar]
  140. ReddM.A. ZeinstraN. QinW. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts.Nat. Commun.201910158410.1038/s41467‑019‑08388‑7 30718840
    [Google Scholar]
  141. ZeinstraN. FreyA.L. XieZ. Stacking thick perfusable human microvascular grafts enables dense vascularity and rapid integration into infarcted rat hearts.Biomaterials202330112225010.1016/j.biomaterials.2023.122250 37481833
    [Google Scholar]
  142. GageB.K. LiuJ.C. InnesB.T. Generation of functional liver sinusoidal endothelial cells from human pluripotent stem-cell-derived venous angioblasts.Cell Stem Cell2020272254269.e910.1016/j.stem.2020.06.007 32640183
    [Google Scholar]
  143. HaoQ. SuH. PalmerD. Bone marrow-derived cells contribute to vascular endothelial growth factor-induced angiogenesis in the adult mouse brain by supplying matrix metalloproteinase-9.Stroke201142245345810.1161/STROKEAHA.110.596452 21164138
    [Google Scholar]
  144. ChoiE.J. WalkerE.J. DegosV. Endoglin deficiency in bone marrow is sufficient to cause cerebrovascular dysplasia in the adult mouse after vascular endothelial growth factor stimulation.Stroke201344379579810.1161/STROKEAHA.112.671974 23306322
    [Google Scholar]
  145. CetinB. ErendorF. EksiY.E. SanliogluA.D. SanliogluS. Gene and cell therapy of human genetic diseases: Recent advances and future directions.J. Cell. Mol. Med.20242817e7005610.1111/jcmm.70056 39245805
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611346772250122111526
Loading
/content/journals/cvp/10.2174/0115701611346772250122111526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test