Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Aims

This study aims to conduct a bibliometric and visual analysis of published studies on myocarditis and coronavirus disease 2019 (COVID-19) vaccines.

Background

The widespread epidemic of COVID-19 has caused millions of deaths and profoundly affected the global medical landscape. Studies on COVID-19 vaccination and related myocarditis have also increased significantly.

Objective

To analyze the current status and trends of myocarditis and COVID-19 vaccine research by bibliometric and to elucidate research hotspots and frontiers.

Methods

Based on the Web of Science Core Collection SCI-Expanded database, we utilize Excel 2019 and visualization analysis tools VOSviewer, Co-Occurrence13.2 (COOC13.2), Citespace, HistCite, and Scimago Graphica for analysis.

Results

Our study encompassed a total of 389 relevant articles, and we observed a consistent upward trend in the number of publications over time, indicating the growing interest in this subject. Among the countries and regions contributing to this body of literature, the United States emerged as the leading publisher, with Harvard Medical School being the most prominent institution associated with these studies. Notably, Matthew E. Oster from the United States emerged as one of the prominent authors in this field. Hotspot research and frontier areas include myocarditis and the different types of COVID-19 vaccines (., mRNA vaccines, adenovirus vector vaccines, inactivated vaccines), the development of new vaccines in reducing the incidence and sequelae of COVID-19 without an increased incidence of myocarditis, and relief of vaccine hesitancy.

Conclusion

Research on myocarditis and the COVID-19 vaccines has grown rapidly. Our research results can help researchers grasp the current status of myocarditis related to the COVID-19 vaccine research and find new research directions in the future.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611287623250107074054
2025-01-17
2025-11-14
Loading full text...

Full text loading...

/deliver/fulltext/cvp/23/5/CVP-23-5-05.html?itemId=/content/journals/cvp/10.2174/0115701611287623250107074054&mimeType=html&fmt=ahah

References

  1. JoneP.N. JohnA. OsterM.E. SARS-CoV-2 infection and associated cardiovascular manifestations and complications in children and young adults: A scientific statement from the american heart association.Circulation202214519e1037e105210.1161/CIR.0000000000001064 35400169
    [Google Scholar]
  2. ChenY. ChengL. LianR. SongZ. TianJ. COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: A bibliometric analysis based on VOSviewer.Biosci. Trends2021152647310.5582/bst.2021.01061 33746182
    [Google Scholar]
  3. AkintundeT.Y. ChenS. MusaT.H. Tracking the progress in COVID-19 and vaccine safety research – a comprehensive bibliometric analysis of publications indexed in Scopus database.Hum. Vaccin. Immunother.202117113887389710.1080/21645515.2021.1969851 34613876
    [Google Scholar]
  4. NoruziA. GholampourB. GholampourS. Current and future perspectives on the COVID-19 vaccine: A scientometric review.J. Clin. Med.202211375010.3390/jcm11030750 35160202
    [Google Scholar]
  5. KleinN.P. LewisN. GoddardK. Surveillance for adverse events after COVID-19 mRNA vaccination.JAMA2021326141390139910.1001/jama.2021.15072 34477808
    [Google Scholar]
  6. WitbergG. BardaN. HossS. Myocarditis after Covid-19 vaccination in a large health care organization.N. Engl. J. Med.2021385232132213910.1056/NEJMoa2110737 34614329
    [Google Scholar]
  7. BardaN. DaganN. Ben-ShlomoY. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting.N. Engl. J. Med.2021385121078109010.1056/NEJMoa2110475 34432976
    [Google Scholar]
  8. BozkurtB. KamatI. HotezP.J. Myocarditis with COVID-19 mRNA vaccines.Circulation2021144647148410.1161/CIRCULATIONAHA.121.056135 34281357
    [Google Scholar]
  9. TruongD.T. DionneA. MunizJ.C. Clinically suspected myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: Suspected myocarditis after COVID-19 vaccination.Circulation2022145534535610.1161/CIRCULATIONAHA.121.056583 34865500
    [Google Scholar]
  10. ZhangY. JiaZ. XiaX. WangJ. Knowledge mapping of COVID-19 and autoimmune diseases: A visual and bibliometric analysis.Clin. Exp. Med.20232373549356410.1007/s10238‑023‑01089‑y 37395896
    [Google Scholar]
  11. GanP. PanX. HuangS. XiaH. ZhouX. TangX. Current status of coronavirus disease 2019 vaccine research based on bibliometric analysis.Hum. Vaccin. Immunother.2022186211976610.1080/21645515.2022.2119766 36494998
    [Google Scholar]
  12. CuiJ. LiY. ZhuM. LiuY. LiuY. Analysis of the research hotspot of exosomes in cardiovascular disease: A bibliometric-based literature review.Curr. Vasc. Pharmacol.202321531634510.2174/0115701611249727230920042944 37779407
    [Google Scholar]
  13. WangW. WangH. YaoT. The top 100 most cited articles on COVID-19 vaccine: A bibliometric analysis.Clin. Exp. Med.20232362287229910.1007/s10238‑023‑01046‑9 36939968
    [Google Scholar]
  14. XiangS. MaoS. ChenF. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions.Chemosphere202230613551710.1016/j.chemosphere.2022.135517 35787882
    [Google Scholar]
  15. TanH. LiJ. HeM. Global evolution of research on green energy and environmental technologies: A bibliometric study.J. Environ. Manage.202129711338210.1016/j.jenvman.2021.113382 34332345
    [Google Scholar]
  16. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  17. ZhangY. JiaZ. WangJ. LiangH. Research hotspots and frontiers of Alzheimer’s disease and gut microbiota: A knowledge mapping and text mining analysis.Mol. Neurobiol.2024611193699382
    [Google Scholar]
  18. ZhangY. PengY. XiaX. Autoimmune diseases and gut microbiota: A bibliometric and visual analysis from 2004 to 2022.Clin. Exp. Med.202323628132827
    [Google Scholar]
  19. TanL. WangX. YuanK. Structural and temporal dynamics analysis on drug-eluting stents: History, research hotspots and emerging trends.Bioact. Mater.20232317018610.1016/j.bioactmat.2022.09.009 36406256
    [Google Scholar]
  20. GuC. WangZ. PanY. ZhuS. GuZ. Tungsten‐based nanomaterials in the biomedical field: A bibliometric analysis of research progress and prospects.Adv. Mater.2023351220439710.1002/adma.202204397 35906814
    [Google Scholar]
  21. WanY. ShenJ. HongY. LiuJ. ShiT. CaiJ. Mapping knowledge landscapes and emerging trends of the biomarkers in melanoma: A bibliometric analysis from 2004 to 2022.Front. Oncol.202313118116410.3389/fonc.2023.1181164 37427124
    [Google Scholar]
  22. DrigginE. MadhavanM.V. BikdeliB. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic.J. Am. Coll. Cardiol.202075182352237110.1016/j.jacc.2020.03.031 32201335
    [Google Scholar]
  23. MadjidM. Safavi-NaeiniP. SolomonS.D. VardenyO. Potential effects of coronaviruses on the cardiovascular system.JAMA Cardiol.20205783184010.1001/jamacardio.2020.1286 32219363
    [Google Scholar]
  24. LiuP.P. BletA. SmythD. LiH. The science underlying COVID-19.Circulation20201421687810.1161/CIRCULATIONAHA.120.047549 32293910
    [Google Scholar]
  25. WangX. FangZ. SunX. Usage patterns of scholarly articles on Web of Science: A study on Web of Science usage count.Scientometrics2016109291792610.1007/s11192‑016‑2093‑0
    [Google Scholar]
  26. GluckmanT.J. BhaveN.M. AllenL.A. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: Myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play.J. Am. Coll. Cardiol.202279171717175610.1016/j.jacc.2022.02.003 35307156
    [Google Scholar]
  27. FioletT. KherabiY. MacDonaldC.J. GhosnJ. Peiffer-SmadjaN. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review.Clin. Microbiol. Infect.202228220222110.1016/j.cmi.2021.10.005 34715347
    [Google Scholar]
  28. MontgomeryJ. RyanM. EnglerR. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military.JAMA Cardiol.20216101202120610.1001/jamacardio.2021.2833 34185045
    [Google Scholar]
  29. WooW. KimA.Y. YonD.K. Clinical characteristics and prognostic factors of myocarditis associated with the mRNA COVID‐19 vaccine.J. Med. Virol.20229441566158010.1002/jmv.27501 34862617
    [Google Scholar]
  30. FangE. LiuX. LiM. Advances in COVID-19 mRNA vaccine development.Signal Transduct. Target. Ther.2022719410.1038/s41392‑022‑00950‑y 35322018
    [Google Scholar]
  31. MoreiraE.D. KitchinN. XuX. Safety and efficacy of a third dose of BNT162b2 Covid-19 vaccine.N. Engl. J. Med.2022386201910192110.1056/NEJMoa2200674 35320659
    [Google Scholar]
  32. VermaA.K. LavineK.J. LinC.Y. Myocarditis after Covid-19 mRNA vaccination.N. Engl. J. Med.2021385141332133410.1056/NEJMc2109975 34407340
    [Google Scholar]
  33. HusbyA. HansenJ.V. FosbølE. SARS-CoV-2 vaccination and myocarditis or myopericarditis: Population based cohort study.BMJ2021375e06866510.1136/bmj‑2021‑068665 34916207
    [Google Scholar]
  34. PollackA. KontorovichA.R. FusterV. DecG.W. Viral myocarditis—diagnosis, treatment options, and current controversies.Nat. Rev. Cardiol.2015121167068010.1038/nrcardio.2015.108 26194549
    [Google Scholar]
  35. WongH.L. HuM. ZhouC.K. Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccination in the USA: A cohort study in claims databases.Lancet2022399103422191219910.1016/S0140‑6736(22)00791‑7 35691322
    [Google Scholar]
  36. AltmannD.M. BoytonR.J. COVID-19 vaccination: The road ahead.Science202237565851127113210.1126/science.abn1755 35271316
    [Google Scholar]
  37. LingR.R. RamanathanK. TanF.L. Myopericarditis following COVID-19 vaccination and non-COVID-19 vaccination: A systematic review and meta-analysis.Lancet Respir. Med.202210767968810.1016/S2213‑2600(22)00059‑5 35421376
    [Google Scholar]
  38. Hippisley-CoxJ. PatoneM. MeiX.W. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: Self-controlled case series study.BMJ2021374n193110.1136/bmj.n1931 34446426
    [Google Scholar]
  39. JiangL. TangK. LevinM. COVID-19 and multisystem inflammatory syndrome in children and adolescents.Lancet Infect. Dis.20202011e276e28810.1016/S1473‑3099(20)30651‑4 32818434
    [Google Scholar]
  40. ShaoS.C. WangC.H. ChangK.C. HungM.J. ChenH.Y. LiaoS.C. Guillain- Barré syndrome associated with COVID-19 vaccination.Emerg. Infect. Dis.202127123175317810.3201/eid2712.211634 34648420
    [Google Scholar]
  41. DiazG.A. ParsonsG.T. GeringS.K. MeierA.R. HutchinsonI.V. RobicsekA. Myocarditis and pericarditis after vaccination for COVID-19.JAMA2021326121210121210.1001/jama.2021.13443 34347001
    [Google Scholar]
  42. BuerginN. Lopez-AyalaP. HirsigerJ.R. Sex‐specific differences in myocardial injury incidence after COVID ‐19 mRNA ‐1273 booster vaccination.Eur. J. Heart Fail.202325101871188110.1002/ejhf.2978 37470105
    [Google Scholar]
  43. AhmedS.K. MohamedM.G. EssaR.A. Global reports of myocarditis following COVID-19 vaccination: A systematic review and meta-analysis.Diabetes Metab. Syndr.202216610251310.1016/j.dsx.2022.102513 35660931
    [Google Scholar]
  44. AndrewsN. TessierE. StoweJ. Duration of protection against mild and severe disease by Covid-19 vaccines.N. Engl. J. Med.2022386434035010.1056/NEJMoa2115481 35021002
    [Google Scholar]
  45. TanS.H.X. CookA.R. HengD. OngB. LyeD.C. TanK.B. Effectiveness of BNT162b2 vaccine against omicron in children 5 to 11 years of age.N. Engl. J. Med.2022387652553210.1056/NEJMoa2203209 35857701
    [Google Scholar]
  46. HammermanA. SergienkoR. FrigerM. Effectiveness of the BNT162b2 vaccine after recovery from Covid-19.N. Engl. J. Med.2022386131221122910.1056/NEJMoa2119497 35172072
    [Google Scholar]
  47. FazlollahiA. ZahmatyarM. NooriM. Cardiac complications following mRNA COVID‐19 vaccines: A systematic review of case reports and case series.Rev. Med. Virol.2022324e231810.1002/rmv.2318 34921468
    [Google Scholar]
  48. RamasamyM.N. MinassianA.M. EwerK.J. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial.Lancet2020396102671979199310.1016/S0140‑6736(20)32466‑1 33220855
    [Google Scholar]
  49. AhmedS.K. Myocarditis after BNT162b2 and mRNA-1273 COVID-19 vaccination: A report of 7 cases.Ann. Med. Surg. (Lond.)20227710365710.1016/j.amsu.2022.103657 35479661
    [Google Scholar]
  50. PatoneM. MeiX.W. HandunnetthiL. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection.Nat. Med.202228241042210.1038/s41591‑021‑01630‑0 34907393
    [Google Scholar]
  51. BottonJ. JabagiM.J. BertrandM. Risk for myocardial infarction, stroke, and pulmonary embolism following COVID-19 vaccines in adults younger than 75 years in France.Ann. Intern. Med.202217591250125710.7326/M22‑0988 35994748
    [Google Scholar]
  52. YaminD. YechezkelM. ArbelR. Safety of monovalent and bivalent BNT162b2 mRNA COVID-19 vaccine boosters in at-risk populations in Israel: A large-scale, retrospective, self-controlled case series study.Lancet Infect. Dis.202323101130114210.1016/S1473‑3099(23)00207‑4 37352878
    [Google Scholar]
  53. SuJ.R. McNeilM.M. WelshK.J. Myopericarditis after vaccination, Vaccine Adverse Event Reporting System (VAERS), 1990–2018.Vaccine202139583984510.1016/j.vaccine.2020.12.046 33422381
    [Google Scholar]
  54. AbrahamN. SpruinS. RossiT. Myocarditis and/or pericarditis risk after mRNA COVID-19 vaccination: A Canadian head to head comparison of BNT162b2 and mRNA-1273 vaccines.Vaccine202240324663467110.1016/j.vaccine.2022.05.048 35750537
    [Google Scholar]
  55. PatoneM. MeiX.W. HandunnetthiL. Risk of myocarditis after sequential doses of COVID-19 vaccine and SARS-CoV-2 infection by age and sex.Circulation20221461074375410.1161/CIRCULATIONAHA.122.059970 35993236
    [Google Scholar]
  56. ChoiM.J. NaY. HyunH.J. Comparative safety analysis of mRNA and adenoviral vector COVID-19 vaccines: A nationwide cohort study using an emulated target trial approach.Clin. Microbiol. Infect.202430564665210.1016/j.cmi.2023.12.010 38101473
    [Google Scholar]
  57. Ab RahmanN. LimM.T. LeeF.Y. Risk of serious adverse events after the BNT162b2, CoronaVac, and ChAdOx1 vaccines in Malaysia: A self-controlled case series study.Vaccine202240324394440210.1016/j.vaccine.2022.05.075 35667917
    [Google Scholar]
  58. WooE.J. GeeJ. MarquezP. Post-authorization safety surveillance of Ad.26.COV2.S vaccine: Reports to the vaccine adverse event reporting system and v-safe, February 2021–February 2022.Vaccine202341304422443010.1016/j.vaccine.2023.06.023 37321898
    [Google Scholar]
  59. PareekM. SessaP. PolverinoP. SessaF. KragholmK.H. SessaM. Myocarditis and pericarditis in individuals exposed to the Ad26.COV2.S, BNT162b2 mRNA, or mRNA-1273 SARS-CoV-2 vaccines.Front. Cardiovasc. Med.202310121000710.3389/fcvm.2023.1210007 38075965
    [Google Scholar]
  60. JaraA. UndurragaE.A. GonzálezC. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile.N. Engl. J. Med.20213851087588410.1056/NEJMoa2107715 34233097
    [Google Scholar]
  61. Wilder-SmithA. MulhollandK. Effectiveness of an inactivated SARS-CoV-2 vaccine.N. Engl. J. Med.20213851094694810.1056/NEJMe2111165 34469651
    [Google Scholar]
  62. ZhangY. ZengG. PanH. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial.Lancet Infect. Dis.202121218119210.1016/S1473‑3099(20)30843‑4 33217362
    [Google Scholar]
  63. FanM. LaiF.T.T. ChengF.W.T. Risk of carditis after three doses of vaccination with mRNA (BNT162b2) or inactivated (CoronaVac) covid-19 vaccination: A self-controlled cases series and a case–control study.Lancet Regional Health - Western Pacific.20233510074510.1016/j.lanwpc.2023.100745 37360861
    [Google Scholar]
  64. MahasingC. DoungngernP. JaipongR. Myocarditis and pericarditis following COVID-19 vaccination in Thailand.Vaccines (Basel)202311474910.3390/vaccines11040749 37112661
    [Google Scholar]
  65. Rosa DuqueJ.S. WangX. LeungD. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines BNT162b2 and CoronaVac in healthy adolescents.Nat. Commun.2022131370010.1038/s41467‑022‑31485‑z 35764637
    [Google Scholar]
  66. ZambranoL.D. NewhamsM.M. OlsonS.M. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA vaccination against multisystem inflammatory syndrome in children among persons aged 12–18 Years — United States, July–December 2021.MMWR Morb. Mortal. Wkly. Rep.2022712525810.15585/mmwr.mm7102e1 35025852
    [Google Scholar]
  67. AmmiratiE. MoslehiJ.J. Diagnosis and treatment of acute myocarditis.JAMA2023329131098111310.1001/jama.2023.3371 37014337
    [Google Scholar]
  68. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑5 32225176
    [Google Scholar]
  69. WatanabeY. MendonçaL. AllenE.R. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine.ACS Cent. Sci.20217459460210.1021/acscentsci.1c00080 34056089
    [Google Scholar]
  70. BusoG. Agabiti-RoseiC. MuiesanM.L. The relationship between COVID-19 vaccines and increased blood pressure: A word of caution.Eur. J. Intern. Med.2023111272910.1016/j.ejim.2023.03.002 36914539
    [Google Scholar]
  71. AngeliF. ReboldiG. ZappaM. VerdecchiaP. Hypertension and myocarditis following COVID-19 vaccination. Two sides of the coin?Eur. J. Intern. Med.202311310710910.1016/j.ejim.2023.04.023 37130772
    [Google Scholar]
  72. SyrigosN. KolliasA. GrapsaD. Significant increase in blood pressure following BNT162b2 mRNA COVID-19 vaccination among healthcare workers: A rare event.Vaccines (Basel)202210574510.3390/vaccines10050745 35632501
    [Google Scholar]
  73. Sindet-PedersenC. MichalikF. StrangeJ.E. Risk of worsening heart failure and all-cause mortality following COVID-19 vaccination in patients with heart failure: A nationwide real-world safety study.Circ. Heart Fail.20231610e01061710.1161/CIRCHEARTFAILURE.123.010617 37503624
    [Google Scholar]
  74. RoutA. SuriS. VorlaM. KalraD.K. Myocarditis associated with COVID-19 and its vaccines - a systematic review.Prog. Cardiovasc. Dis.20227411112110.1016/j.pcad.2022.10.004 36279947
    [Google Scholar]
  75. PariB. BabbiliA. KattubadiA. COVID-19 vaccination and cardiac arrhythmias: A review.Curr. Cardiol. Rep.202325992594010.1007/s11886‑023‑01921‑7 37530946
    [Google Scholar]
  76. DickermanB.A. MadenciA.L. GerlovinH. Comparative safety of BNT162b2 and mRNA-1273 vaccines in a nationwide cohort of US veterans.JAMA Intern. Med.2022182773974610.1001/jamainternmed.2022.2109 35696161
    [Google Scholar]
  77. KimY.E. HuhK. ParkY.J. PeckK.R. JungJ. Association between vaccination and acute myocardial infarction and ischemic stroke after COVID-19 infection.JAMA2022328988788910.1001/jama.2022.12992 35867050
    [Google Scholar]
  78. CatelliR. PelosiS. ComitoC. PizzutiC. EspositoM. Lexicon-based sentiment analysis to detect opinions and attitude towards COVID-19 vaccines on Twitter in Italy.Comput. Biol. Med.202315810687610.1016/j.compbiomed.2023.106876 37030266
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611287623250107074054
Loading
/content/journals/cvp/10.2174/0115701611287623250107074054
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bibliometrics; COVID-19 vaccines; frontiers; hotspots; myocarditis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test