Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Resveratrol [RES] is a polyphenolic stilbene with therapeutic potential owing to its antioxidant, anti-inflammatory, neuroprotective, and cardioprotective properties. However, the very poor oral bioavailability, fast metabolism, and extremely low stability under physiological conditions pose a severe detriment to the clinical use of RES. This newly developed field of nanotechnology has led to the formulation of RES into nanoformulations with the goal of overcoming metabolic-pharmacokinetic limitations and enhancing the targeted transport of RES to the central nervous system [CNS]. Among the various routes of administration, the combination of nose-to-brain [N2B] delivery the intranasal [IN] route has recently garnered attention as a straightforward, non-invasive route for transport to the blood-brain barrier [BBB] for greater effects and less harmful systemic side effects by transporting nano-encapsulated RES into the neural tissues. This review critically summarizes the mechanisms and benefits of the N2B route for the delivery of RES nanoformulations, collating data demonstrating increased CNS bioavailability and stability and, consequently, improved therapeutic efficacy in animal models of neurodegenerative diseases. Compared with the more 'traditional' routes of administration, IN administration of RES nanoformulations is less toxic, cost-effective, and efficient in crossing the BBB. Therefore, this route represents a promising approach to the management of CNS disorders. Further optimization of nanoformulation design and clinical protocols is required to translate these promising findings into therapeutic strategies aimed at neuroprotection and disease modification in human CNS pathologies.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611337079250115071933
2025-09-01
2025-12-14
Loading full text...

Full text loading...

References

  1. KaurA. TiwariR. TiwariG. RamachandranV. Resveratrol: A vital therapeutic agent with multiple health benefits.Drug Res. 202272151710.1055/a‑1555‑2919 34412126
    [Google Scholar]
  2. ZhangL.X. LiC.X. KakarM.U. Resveratrol (RV): A pharmacological review and call for further research.Biomed. Pharmacother.202114311216410.1016/j.biopha.2021.112164 34649335
    [Google Scholar]
  3. JangJ.Y. ImE. KimN.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A Review.Int. J. Mol. Sci.202223221368910.3390/ijms232213689 36430164
    [Google Scholar]
  4. Fonseca-SantosB. ChorilliM. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems.Int. J. Pharm.202058911983210.1016/j.ijpharm.2020.119832 32877730
    [Google Scholar]
  5. AndradeS. RamalhoM.J. PereiraM.C. LoureiroJ.A. Resveratrol brain delivery for neurological disorders prevention and treatment.Front. Pharmacol.20189126110.3389/fphar.2018.01261 30524273
    [Google Scholar]
  6. GranzottoA. ZattaP. Resveratrol and Alzheimer’s disease: Message in a bottle on red wine and cognition.Front. Aging Neurosci.201469510.3389/fnagi.2014.00095 24860502
    [Google Scholar]
  7. AnnajiM. PoudelI. BodduS.H.S. ArnoldR.D. TiwariA.K. BabuR.J. Resveratrol‐loaded nanomedicines for cancer applications.Cancer Rep.202143e135310.1002/cnr2.1353 33655717
    [Google Scholar]
  8. YıldırımM. SessevmezM. PoyrazS. DüzgüneşN. Recent strategies for cancer therapy: Polymer nanoparticles carrying medicinally important phytochemicals and their cellular targets.Pharmaceutics20231511256610.3390/pharmaceutics15112566 38004545
    [Google Scholar]
  9. WaheedS. LiZ. ZhangF. ChiariniA. ArmatoU. WuJ. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery.J. Nanobiotechnology202220139510.1186/s12951‑022‑01605‑4 36045386
    [Google Scholar]
  10. BhardwajA.K. PanditA.K. RehaliaA. SinghV. SharmaR. A review on nanomaterials for drug delivery systems and application of carbon based nanomaterials.ES Materials & Manufacturing20232182410.30919/esmm5f824
    [Google Scholar]
  11. GhazalS. AkbariA. HosseiniH.A. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities.J. Mol. Struct.2020121712837810.1016/j.molstruc.2020.128378
    [Google Scholar]
  12. ForouzanfarF. Pourbagher-ShahriA.M. DarroudiM. Cerium oxide nanoparticles ameliorate oxidative stress, inflammation, and pain behavior in neuropathic rats.Curr. Neurovasc. Res.2023201546110.2174/1567202620666230125104604 36698228
    [Google Scholar]
  13. GhazalS. AkbariA. HosseiniH.A. Biosynthesis of silver-doped nickel oxide nanoparticles and evaluation of their photocatalytic and cytotoxicity properties.Appl. Phys., A Mater. Sci. Process.2020126648010.1007/s00339‑020‑03664‑6
    [Google Scholar]
  14. JeevanandamJ. ChanY.S. DanquahM.K. Nano-formulations of drugs: Recent developments, impact and challenges.Biochimie2016128-1299911210.1016/j.biochi.2016.07.008 27436182
    [Google Scholar]
  15. RudrapalM. MishraA.K. RaniL. Nanodelivery of dietary polyphenols for therapeutic applications.Molecules20222724870610.3390/molecules27248706 36557841
    [Google Scholar]
  16. BoharaR.A. TabassumN. SinghM.P. GigliG. RagusaA. LeporattiS. Recent overview of resveratrol’s beneficial effects and its nano-delivery systems.Molecules20222716515410.3390/molecules27165154 36014390
    [Google Scholar]
  17. KiskuA. NishadA. AgrawalS. Recent developments in intranasal drug delivery of nanomedicines for the treatment of neuropsychiatric disorders.Front. Med.202411146397610.3389/fmed.2024.1463976 39364023
    [Google Scholar]
  18. GandhiS. ShastriD.H. ShahJ. NairA.B. JacobS. Nasal delivery to the brain: Harnessing nanoparticles for effective drug transport.Pharmaceutics202416448110.3390/pharmaceutics16040481 38675142
    [Google Scholar]
  19. KumarA. ShuklaR. Current strategic arsenal and advances in nose to brain nanotheranostics for therapeutic intervention of glioblastoma multiforme.J Biomater Sci Polym Ed202413510.1080/09205063.2024.2396721 39250527
    [Google Scholar]
  20. KhuntD. SalaveS. RanaD. BenivalD. GayakvadB. PrajapatiB.G. Nose to brain delivery for the treatment of Alzheimer’s disease Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier2024617110.1016/B978‑0‑443‑13205‑6.00001‑7
    [Google Scholar]
  21. WenP. RenC. Research progress on intranasal treatment for Parkinson’s disease.Neuroprotection20242799910.1002/nep3.42
    [Google Scholar]
  22. ZhangY.J. LeeJ.Y. IgarashiK.M. Circuit dynamics of the olfactory pathway during olfactory learning.Front. Neural Circuits202418143757510.3389/fncir.2024.1437575 39036422
    [Google Scholar]
  23. Libreros-JiménezH.M. ManzoJ. Rojas-DuránF. On the cranial nerves.NeuroSci20235183810.3390/neurosci5010002 39483811
    [Google Scholar]
  24. Akpinar AdscheidS. TüreliA.E. Günday-TüreliN. SchneiderM. Nanotechnological approaches for efficient N2B delivery: From small-molecule drugs to biopharmaceuticals.Beilstein J. Nanotechnol.20241511400141410.3762/bjnano.15.113 39559726
    [Google Scholar]
  25. OgawaK. KatoN. KawakamiS. Recent strategies for targeted brain drug delivery.Chem. Pharm. Bull. 202068756758210.1248/cpb.c20‑00041 32611994
    [Google Scholar]
  26. LeeD. MinkoT. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier.Pharmaceutics20211312204910.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  27. KhanA.R. LiuM. KhanM.W. ZhaiG. Progress in brain targeting drug delivery system by nasal route.J. Control. Release201726836438910.1016/j.jconrel.2017.09.001 28887135
    [Google Scholar]
  28. FortunaA. AlvesG. SerralheiroA. SousaJ. FalcãoA. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules.Eur. J. Pharm. Biopharm.201488182710.1016/j.ejpb.2014.03.004 24681294
    [Google Scholar]
  29. RajputA. PingaleP. Dhapte-PawarV. Nasal delivery of neurotherapeutics via nanocarriers: Facets, aspects, and prospects.Front. Pharmacol.20221397968210.3389/fphar.2022.979682 36176429
    [Google Scholar]
  30. SinghA. MaheshwariS. YadavJ.P. VarshneyA.P. SinghS. PrajapatiB.G. A review on tau targeting biomimetics nano formulations: Novel approach for targeting alzheimer’s diseases.Cent. Nerv. Syst. Agents Med. Chem.202424329430310.2174/0118715249289120240321065936 38646682
    [Google Scholar]
  31. KanojiaN. ThapaK. KaurG. SharmaA. PuriV. VermaN. Update on therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer’s and Parkinson’s disease.J. Drug Deliv. Sci. Technol.20237910407410.1016/j.jddst.2022.104074
    [Google Scholar]
  32. TeliD. SatasiaR. PatelV. NairR. KhatriR. GalaD. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals.Clin Tradit Med Pharmacol2024200139
    [Google Scholar]
  33. GhoshA. MajieA. KarmakarV. In-depth mechanism, challenges, and opportunities of delivering therapeutics in brain using intranasal route.AAPS PharmSciTech20242559610.1208/s12249‑024‑02810‑0 38710855
    [Google Scholar]
  34. Gawarkar-PatilP. MahajanB. PawarA. Dhapte-PawarV. Cubosomes: Evolving platform for intranasal drug delivery of neurotherapeutics.Fut J. Pharm. Sci.20241019110.1186/s43094‑024‑00665‑7
    [Google Scholar]
  35. IslamS.U. ShehzadA. AhmedM.B. LeeY.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders.Molecules2020258192910.3390/molecules25081929 32326318
    [Google Scholar]
  36. SabouniN. MarzouniH.Z. PalizbanS. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells.J. Drug Target.202331324326010.1080/1061186X.2022.2141755 36305097
    [Google Scholar]
  37. GuoZ.H. KhattakS. RaufM.A. Role of nanomedicine-based therapeutics in the treatment of CNS disorders.Molecules2023283128310.3390/molecules28031283 36770950
    [Google Scholar]
  38. ChenY. ZhangC. HuangY. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway.Adv. Drug Deliv. Rev.202420711519610.1016/j.addr.2024.115196 38336090
    [Google Scholar]
  39. LeeJ. HanY. WangW. Phytochemicals in cancer immune checkpoint inhibitor therapy.Biomolecules2021118110710.3390/biom11081107 34439774
    [Google Scholar]
  40. HaunschildR. MarxW. On health effects of resveratrol in wine.Int. J. Environ. Res. Public Health2022195311010.3390/ijerph19053110 35270803
    [Google Scholar]
  41. El-SayedS.A.E.S. El-AlfyE.S. Sayed-AhmedM.Z. Evaluating the inhibitory effect of resveratrol on the multiplication of several Babesia species and Theileria equi on in vitro cultures, and Babesia microti in mice.Front. Pharmacol.202314119299910.3389/fphar.2023.1192999 37324476
    [Google Scholar]
  42. RenB. KwahM.X.Y. LiuC. Resveratrol for cancer therapy: Challenges and future perspectives.Cancer Lett.2021515637210.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  43. RiccioB.V.F. SpósitoL. CarvalhoG.C. FerrariP.C. ChorilliM. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body.Arch Pharm202035312200014610.1002/ardp.202000146 32886393
    [Google Scholar]
  44. WeiskirchenS. WeiskirchenR. Resveratrol: How much wine do you have to drink to stay healthy?Adv. Nutr.20167470671810.3945/an.115.011627 27422505
    [Google Scholar]
  45. YangY. SunY. GuT. The metabolic characteristics and bioavailability of resveratrol based on metabolic enzymes.Nutr. Rev.2024nuae16110.1093/nutrit/nuae161 39520710
    [Google Scholar]
  46. PecynaP. WargulaJ. MuriasM. KucinskaM. More than resveratrol: New insights into stilbene-based compounds.Biomolecules2020108111110.3390/biom10081111 32726968
    [Google Scholar]
  47. PandeyK.B. RizviS.I. Anti-oxidative action of resveratrol: Implications for human health.Arab. J. Chem.20114329329810.1016/j.arabjc.2010.06.049
    [Google Scholar]
  48. AmriA. ChaumeilJ.C. SfarS. CharrueauC. Administration of resveratrol: What formulation solutions to bioavailability limitations?J. Control. Release2012158218219310.1016/j.jconrel.2011.09.083 21978644
    [Google Scholar]
  49. VázquezB.E.R. Rodríguez-BeasC. Iñiguez-PalomaresR.A. Spectroscopic analysis and nuclear magnetic resonance for silver nanoparticles synthesized with trans-resveratrol and cis-resveratrol.Colloid Polym. Sci.2022300546547510.1007/s00396‑022‑04957‑3
    [Google Scholar]
  50. WijekoonC. NetticadanT. SiowY.L. Potential associations among bioactive molecules, antioxidant activity and resveratrol production in Vitis vinifera fruits of North America.Molecules202227233610.3390/molecules27020336 35056651
    [Google Scholar]
  51. WangS. DuQ. MengX. ZhangY. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome.Food Funct.202213199734975310.1039/D2FO01552H 36134531
    [Google Scholar]
  52. VenkatR. VermaE. DaimaryU.D. The journey of resveratrol from vineyards to clinics.Cancer Invest.202341218322010.1080/07357907.2022.2115057 35993769
    [Google Scholar]
  53. Gowd V, Kanika , Jori C, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease.J. Nutr. Biochem.202210910910110.1016/j.jnutbio.2022.109101 35777588
    [Google Scholar]
  54. AdedokunK.A. ImodoyeS.O. BelloI.O. LanihunA-A. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery.In: Phytochemistry, Computational Tools and Databases in Drug Discovery.Elsevier202339345510.1016/B978‑0‑323‑90593‑0.00017‑4
    [Google Scholar]
  55. BanoS. AhmedF. KhanF. ChaudharyS.C. SamimM. Enhancement of the cancer inhibitory effect of the bioactive food component resveratrol by nanoparticle based delivery.Food Funct.20201143213322610.1039/C9FO02445J 32215382
    [Google Scholar]
  56. GeY. ZhouM. ChenC. WuX. WangX. Role of AMPK mediated pathways in autophagy and aging.Biochimie202219510011310.1016/j.biochi.2021.11.008 34838647
    [Google Scholar]
  57. SorrentiV. BenedettiF. BurianiA. Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: Focus on mTOR and AMPK signaling networks.Pharmaceuticals202215891210.3390/ph15080912 35893737
    [Google Scholar]
  58. HaqI.U. ImranM. NadeemM. TufailT. GondalT.A. MubarakM.S. Piperine: A review of its biological effects.Phytother. Res.202135268070010.1002/ptr.6855 32929825
    [Google Scholar]
  59. Sharifi-RadJ. QuispeC. DurazzoA. Resveratrol’ biotechnological applications: Enlightening its antimicrobial and antioxidant properties.J. Herb. Med.20223210055010.1016/j.hermed.2022.100550
    [Google Scholar]
  60. ChenX. ChenY. LiuY. ZouL. McClementsD.J. LiuW. A review of recent progress in improving the bioavailability of nutraceutical‐loaded emulsions after oral intake.Compr. Rev. Food Sci. Food Saf.20222153963400110.1111/1541‑4337.13017 35912644
    [Google Scholar]
  61. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules26010229 33466247
    [Google Scholar]
  62. SummerlinN. SooE. ThakurS. QuZ. JambhrunkarS. PopatA. Resveratrol nanoformulations: Challenges and opportunities.Int. J. Pharm.2015479228229010.1016/j.ijpharm.2015.01.003 25572692
    [Google Scholar]
  63. SongG. SumitB. GuangyiY. ArijitaD. MingH. Oral bioavailability challenges of natural products used in cancer chemoprevention.Huaxue Jinzhan201325091553
    [Google Scholar]
  64. CottartC.H. Nivet-AntoineV. Laguillier-MorizotC. BeaudeuxJ.L. Resveratrol bioavailability and toxicity in humans.Mol. Nutr. Food Res.201054171610.1002/mnfr.200900437 20013887
    [Google Scholar]
  65. LiuY. LiangY. YuhongJ. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs.Drug Des. Devel. Ther.2024181469149510.2147/DDDT.S447496 38707615
    [Google Scholar]
  66. KumariN.U. PardhiE. CharyP.S. MehraN.K. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy.Ther. Deliv.202415427930310.4155/tde‑2023‑0092 38374774
    [Google Scholar]
  67. PriyadarshiniS. BoraS. KulhariH. Lipid-based nanocarriers for the delivery of phytoconstituents.In: Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals.Springer202412516710.1007/978‑981‑99‑5314‑1_5
    [Google Scholar]
  68. PatilM. HussainA. AltamimiM.A. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Biol. Metastasis2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  69. SaleemZ. RehmanK. Hamid AkashM.S. Role of drug delivery system in improving the bioavailability of resveratrol.Curr. Pharm. Des.202228201632164210.2174/1381612828666220705113514 35792129
    [Google Scholar]
  70. DeshmukhM. Synthesize and characterize the lipoid s-75 conjugated chitosan-based micelles for improving biopharmaceutical parameters of resveratrol.Asian J. Pharm.202418310.22377/ajp.v18i3.5645
    [Google Scholar]
  71. JøraholmenM.W. JohannessenM. GravningenK. Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection.Pharmaceutics20201212120310.3390/pharmaceutics12121203 33322392
    [Google Scholar]
  72. KaasgaardT. AndresenT.L. Liposomal cancer therapy: Exploiting tumor characteristics.Expert Opin. Drug Deliv.20107222524310.1517/17425240903427940 20095944
    [Google Scholar]
  73. JøraholmenM.W. Škalko-BasnetN. AcharyaG. BasnetP. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections.Eur. J. Pharm. Sci.20157911212110.1016/j.ejps.2015.09.007 26360840
    [Google Scholar]
  74. MasjediM. MontahaeiT. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications.J. Drug Deliv. Sci. Technol.20216110223410.1016/j.jddst.2020.102234
    [Google Scholar]
  75. MachadoN.D. GutiérrezG. MatosM. FernándezM.A. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes.Foods202110598810.3390/foods10050988 33946473
    [Google Scholar]
  76. MalekianF. ShamsianA. KodamS.P. UllahM. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective.J. Physiol.2022 35570717
    [Google Scholar]
  77. KalluriR. The biology and function of exosomes in cancer.J. Clin. Invest.201612641208121510.1172/JCI81135 27035812
    [Google Scholar]
  78. BangC. ThumT. Exosomes: New players in cell–cell communication.Int. J. Biochem. Cell Biol.201244112060206410.1016/j.biocel.2012.08.007 22903023
    [Google Scholar]
  79. HuoL. DuX. LiX. LiuS. XuY. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases.Front. Neurosci.20211573844210.3389/fnins.2021.738442 34531720
    [Google Scholar]
  80. González-SarríasA. Iglesias-AguirreC.E. Cortés-MartínA. Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity.Int. J. Mol. Sci.2022235286010.3390/ijms23052860 35270004
    [Google Scholar]
  81. FanY. LiY. HuangS. XuH. LiH. LiuB. Resveratrol-primed exosomes strongly promote the recovery of motor function in SCI rats by activating autophagy and inhibiting apoptosis via the PI3K signaling pathway.Neurosci. Lett.202073613526210.1016/j.neulet.2020.135262 32682847
    [Google Scholar]
  82. PandeyP. VermaM. LakhanpalS. An updated review summarizing the anticancer potential of poly(Lactic‐ co ‐Glycolic Acid) (PLGA) based curcumin, Epigallocatechin Gallate, and resveratrol nanocarriers.Biopolymers2024e2363710.1002/bip.23637 39417679
    [Google Scholar]
  83. SantosA.C. PereiraI. Pereira-SilvaM. Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns.Trends Food Sci. Technol.20199148349710.1016/j.tifs.2019.07.048
    [Google Scholar]
  84. PeiJ. PalanisamyC.P. NatarajanP.M. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer’s disease: A comprehensive review.Ageing Res. Rev.20249910239310.1016/j.arr.2024.102393 38925479
    [Google Scholar]
  85. ElmowafyM. ShalabyK. ElkomyM.H. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges.Polymers 2023155112310.3390/polym15051123 36904364
    [Google Scholar]
  86. RanjanS. DindaS.C. Preparation, characterization and evaluation of resveratrol loaded pegylated PLGA nanoparticles.J. Young Pharm.202315345646410.5530/jyp.2023.15.61
    [Google Scholar]
  87. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  88. KhishvandM.A. YeganehE.M. ZareiM. SoleimaniM. MohammadiM. MahjubR. Development, statistical optimization, and characterization of resveratrol‐containing solid lipid nanoparticles (SLNs) and determination of the efficacy in reducing neurodegenerative symptoms related to Alzheimer’s disease: In vitro and in vivo study.BioMed Res. Int.202420241787726510.1155/2024/7877265 39376256
    [Google Scholar]
  89. ShrotriyaS.N. RanpiseN.S. VidhateB.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis.Drug Deliv. Transl. Res.201771375210.1007/s13346‑016‑0350‑7 27981502
    [Google Scholar]
  90. PanditaD. KumarS. PooniaN. LatherV. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol.Food Res. Int.2014621165117410.1016/j.foodres.2014.05.059
    [Google Scholar]
  91. RigonR. FachinettiN. SeverinoP. SantanaM. ChorilliM. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies.Molecules201621111610.3390/molecules21010116 26805794
    [Google Scholar]
  92. SinghA. AhmadI. AhmadS. IqbalZ. AhmadF.J. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: Nanoformulation development, pharmacokinetics and pharmacodynamics.Drug Dev. Ind. Pharm.20164291524153610.3109/03639045.2016.1151032 26902951
    [Google Scholar]
  93. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms17091534 27649147
    [Google Scholar]
  94. ParkS. ChaS.H. ChoI. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles.Mater. Sci. Eng. C2016581160116910.1016/j.msec.2015.09.068 26478416
    [Google Scholar]
  95. XiangS. ZhangK. YangG. GaoD. ZengC. HeM. Mitochondria-targeted and resveratrol-loaded dual-function titanium disulfide nanosheets for photothermal-triggered tumor chemotherapy.Nanoscale Res. Lett.201914121110.1186/s11671‑019‑3044‑5 31227943
    [Google Scholar]
  96. YangT. RenH. ZhangW. RongL. ZhangD. Resveratrol-coated gold nanoflowers for CT imaging and apoptosis/photothermal synergistic therapy of malignant melanoma.ACS Omega2023838346293463910.1021/acsomega.3c03538 37779940
    [Google Scholar]
  97. ChenZ. ŚwisłockaR. ChoińskaR. Exploring the correlation between the molecular structure and biological activities of metal–phenolic compound complexes: Research and description of the role of metal ions in improving the antioxidant activities of phenolic compounds.Int. J. Mol. Sci.202425211177510.3390/ijms252111775 39519325
    [Google Scholar]
  98. Al-ThaniA.N. JanA.G. AbbasM. GeethaM. SadasivuniK.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review.Life Sci.202435212289910.1016/j.lfs.2024.122899 38992574
    [Google Scholar]
  99. SellM. LopesA.R. EscudeiroM. Application of nanoparticles in cancer treatment: A concise review.Nanomaterials 20231321288710.3390/nano13212887 37947732
    [Google Scholar]
  100. AhmadA. ImranM. SharmaN. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications.Pharmaceutics20221411246310.3390/pharmaceutics14112463 36432653
    [Google Scholar]
  101. Jamalipour SoufiG. IravaniS. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives.Green Chem.20202292662268710.1039/D0GC00734J
    [Google Scholar]
  102. JacobS. KatherF.S. BodduS.H.S. ShahJ. NairA.B. Innovations in nanoemulsion technology: Enhancing drug delivery for oral, parenteral, and ophthalmic applications.Pharmaceutics20241610133310.3390/pharmaceutics16101333 39458662
    [Google Scholar]
  103. SinghY. MeherJ.G. RavalK. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.008 28279798
    [Google Scholar]
  104. EissaS.M. ElsayedM.S. GawishA.M. ElzorkanyH.E. SabetS. Resveratrol-loaded cumin seed oil nanoemulsion ameliorates neurodegeneration in mice by inhibiting apoptosis, inflammation, and oxidative DNA damage.Nanomed. J.2024114
    [Google Scholar]
  105. SongY. ZhangJ. ZhuL. ZhangH. WuG. LiuT. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: A review.Food Funct.202415178629864310.1039/D3FO03892K 39140384
    [Google Scholar]
  106. NeneS. DevabattulaG. VambhurkarG. TryphenaK.P. SinghP.K. KhatriD.K. High mobility group box 1 cytokine targeted topical delivery of resveratrol embedded nanoemulgel for the management of atopic dermatitis.Drug Deliv. Transl. Res.2024124 38509343
    [Google Scholar]
  107. LocatelliF.M. KawanoT. IwataH. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats.J. Pharmacol. Sci.2018137439540210.1016/j.jphs.2018.08.006 30196020
    [Google Scholar]
  108. JasminaH. DžanaO. AlisaE. EdinaV. OgnjenkaR. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods.2017CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering Springer, Singapore, 15 March 2017SpringerSingapore31732210.1007/978‑981‑10‑4166‑2_48
    [Google Scholar]
  109. SafayaM. RotliwalaY.C. Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique.Mater. Today Proc.20202745445910.1016/j.matpr.2019.11.267
    [Google Scholar]
  110. LuL. LiuY. ZhangZ. Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system.Biol. Pharm. Bull.201538101658166210.1248/bpb.b15‑00371 26424027
    [Google Scholar]
  111. dos SantosR.G. Colloidal and Self-Assembly Systems Fundamentals of Surface Thermodynamics: Phase Behavior and Its Related Properties.Springer2024113210.1007/978‑3‑031‑52466‑0_2
    [Google Scholar]
  112. WangS. ChenR. MorottJ. RepkaM.A. WangY. ChenM. mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer.Expert Opin. Drug Deliv.201512336137310.1517/17425247.2014.951634 25392124
    [Google Scholar]
  113. JadhavP. BothirajaC. PawarA. Resveratrol-piperine loaded mixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity.RSC Advances2016611411279511280510.1039/C6RA24595A
    [Google Scholar]
  114. SuttonD. NasongklaN. BlancoE. GaoJ. Functionalized micellar systems for cancer targeted drug delivery.Pharm. Res.20072461029104610.1007/s11095‑006‑9223‑y 17385025
    [Google Scholar]
  115. PrajapatiS.K. JainA. Dendrimers for advanced drug delivery.Advanced Biopolymeric Systems for Drug Delivery.Springer2020339360
    [Google Scholar]
  116. Kececiler-EmirC. Ilhan-AyisigiE. Celen-ErdenC. NalbantsoyA. Yesil-CeliktasO. Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity.Plant Foods Hum. Nutr.202176221922510.1007/s11130‑021‑00897‑5 33950366
    [Google Scholar]
  117. ChauhanA.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol.Ann. N. Y. Acad. Sci.20151348113414010.1111/nyas.12816 26173478
    [Google Scholar]
  118. SinghM.K. SinghS. PatilU.K. ChauhanA.S. Poly(amidoamine) dendrimers a ‘soft polymer’ for topical application of resveratrol: Ex-vivo & in-vivo study.J. Drug Deliv. Sci. Technol.20249710579210.1016/j.jddst.2024.105792
    [Google Scholar]
  119. ZhangX. LiZ. GaoJ. Preparation of nanocrystals for insoluble drugs by top-down nanotechnology with improved solubility and bioavailability.Molecules2020255108010.3390/molecules25051080 32121076
    [Google Scholar]
  120. SinicoC. PiredduR. PiniE. Enhancing topical delivery of resveratrol through a nanosizing approach.Planta Med.2017835476481 27220078
    [Google Scholar]
  121. LaiF. SchlichM. PiredduR. FaddaA.M. SinicoC. Nanocrystals as effective delivery systems of poorly water-soluble natural molecules.Curr. Med. Chem.201926244657468010.2174/0929867326666181213095809 30543163
    [Google Scholar]
  122. GigliobiancoM.R. CasadidioC. CensiR. Di MartinoP. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability.Pharmaceutics201810313410.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  123. SinghS.K. MakadiaV. SharmaS. Preparation and in-vitro/in-vivo characterization of trans-resveratrol nanocrystals for oral administration.Drug Deliv. Transl. Res.20177339540710.1007/s13346‑017‑0362‑y 28194730
    [Google Scholar]
  124. Vivero-LopezM. MurasA. SilvaD. Resveratrol-loaded hydrogel contact lenses with antioxidant and antibiofilm performance.Pharmaceutics202113453210.3390/pharmaceutics13040532 33920327
    [Google Scholar]
  125. SelviS.S. HasköylüM.E. GençS. Toksoy ÖnerE. Synthesis and characterization of levan hydrogels and their use for resveratrol release.J. Bioact. Compat. Polym.202136646448010.1177/08839115211055725
    [Google Scholar]
  126. ZhaoC-C. ZhuL. WuZ. YangR. XuN. LiangL. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation.Regen. Biomater.20207199107 32440361
    [Google Scholar]
  127. ZhuW. DongY. XuP. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice.Acta Biomater.202215421223010.1016/j.actbio.2022.10.038 36309190
    [Google Scholar]
  128. LiX. SuX. Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20186294714473010.1039/C8TB01078A 32254299
    [Google Scholar]
  129. JacobS. NairA.B. ShahJ. SreeharshaN. GuptaS. ShinuP. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management.Pharmaceutics202113335710.3390/pharmaceutics13030357 33800402
    [Google Scholar]
  130. ThambiT. LiY. LeeD.S. Injectable hydrogels for sustained release of therapeutic agents.J. Control. Release2017267576610.1016/j.jconrel.2017.08.006 28827094
    [Google Scholar]
  131. RadevaL. YordanovY. SpassovaI. Incorporation of resveratrol-hydroxypropyl-β-cyclodextrin complexes into hydrogel formulation for wound treatment.Gels202410534610.3390/gels10050346 38786263
    [Google Scholar]
  132. ChaudharyA. ShambhakarS. Nanotechnology in drug delivery: Overcoming poor solubility challenges through nanoformulations.Curr. Nanomed.2024143200211
    [Google Scholar]
  133. ThirumalD. SindhuR.K. GoyalS. Pathology and treatment of psoriasis using nanoformulations.Biomedicines2023116158910.3390/biomedicines11061589 37371684
    [Google Scholar]
  134. SarfrazM. ArafatM. ZaidiS.H.H. Resveratrol-laden nano-systems in the cancer environment: Views and reviews.Cancers 20231518449910.3390/cancers15184499 37760469
    [Google Scholar]
  135. CaldasA.R. CatitaJ. MachadoR. Omega-3-and resveratrol-loaded lipid nanosystems for potential use as topical formulations in autoimmune, inflammatory, and cancerous skin diseases.Pharmaceutics2021138120210.3390/pharmaceutics13081202 34452163
    [Google Scholar]
  136. LombardoR. MusumeciT. CarboneC. PignatelloR. Nanotechnologies for intranasal drug delivery: An update of literature.Pharm. Dev. Technol.202126882484510.1080/10837450.2021.1950186 34218736
    [Google Scholar]
  137. EmadN.A. AhmedB. AlhalmiA. AlzobaidiN. Al-KubatiS.S. Recent progress in nanocarriers for direct nose to brain drug delivery.J. Drug Deliv. Sci. Technol.20216410264210.1016/j.jddst.2021.102642
    [Google Scholar]
  138. KellerL.A. MerkelO. PoppA. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development.Drug Deliv. Transl. Res.202212473575710.1007/s13346‑020‑00891‑5 33491126
    [Google Scholar]
  139. PardeshiC.V. BelgamwarV.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting.Expert Opin. Drug Deliv.201310795797210.1517/17425247.2013.790887 23586809
    [Google Scholar]
  140. SavaleS. MahajanH. Nose to brain: A versatile mode of drug delivery system.Asian J Biomater Res2017311638
    [Google Scholar]
  141. TrevaskisN.L. KaminskasL.M. PorterC.J.H. From sewer to saviour — Targeting the lymphatic system to promote drug exposure and activity.Nat. Rev. Drug Discov.2015141178180310.1038/nrd4608 26471369
    [Google Scholar]
  142. CroweT.P. GreenleeM.H.W. KanthasamyA.G. HsuW.H. Mechanism of intranasal drug delivery directly to the brain.Life Sci.2018195445210.1016/j.lfs.2017.12.025 29277310
    [Google Scholar]
  143. BattagliaL. PancianiP.P. MuntoniE. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery.Expert Opin. Drug Deliv.201815436937810.1080/17425247.2018.1429401 29338427
    [Google Scholar]
  144. BonferoniM.C. RossiS. SandriG. Nanoemulsions for “nose-to-brain” drug delivery.Pharmaceutics20191128410.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  145. MusumeciT. BonaccorsoA. PuglisiG. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview.Pharmaceutics201911311810.3390/pharmaceutics11030118 30871237
    [Google Scholar]
  146. LeeJ. KimH.J. Normal aging induces changes in the brain and neurodegeneration progress: Review of the structural, biochemical, metabolic, cellular, and molecular changes.Front. Aging Neurosci.20221493153610.3389/fnagi.2022.931536 35847660
    [Google Scholar]
  147. KondoK. KikutaS. UehaR. SuzukawaK. YamasobaT. Age-related olfactory dysfunction: Epidemiology, pathophysiology, and clinical management.Front. Aging Neurosci.20201220810.3389/fnagi.2020.00208 32733233
    [Google Scholar]
  148. SanaeifarF. PourranjbarS. PourranjbarM. Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration.Exp. Gerontol.202419511253910.1016/j.exger.2024.112539 39116955
    [Google Scholar]
  149. ChungS. PetersJ.M. DetynieckiK. TatumW. RabinowiczA.L. CarrazanaE. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters.Epilepsy Behav. Rep.20232110058110.1016/j.ebr.2022.100581 36636458
    [Google Scholar]
  150. BahadurS. JhaM.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review.J. Drug Deliv. Sci. Technol.20227810393210.1016/j.jddst.2022.103932
    [Google Scholar]
  151. MignaniS. ShiX. KarpusA. MajoralJ.P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs.Eur. J. Med. Chem.202120911290510.1016/j.ejmech.2020.112905 33069435
    [Google Scholar]
  152. BavaB. SharmaK. YadavV. Intranasal drug delivery system: A review.Res J Sci Technol2024161515810.52711/2349‑2988.2024.00009
    [Google Scholar]
  153. AlagusundaramM. ChengaiahB. GnanaprakashK. RamkanthS. ChettyC.M. DhachinamoorthiD. Nasal drug delivery system-an overview.Int J Res Pharm Sci201014454465
    [Google Scholar]
  154. BharadwajV.N. TzabazisA.Z. KlukinovM. ManeringN.A. YeomansD.C. Intranasal administration for pain: Oxytocin and other polypeptides.Pharmaceutics2021137108810.3390/pharmaceutics13071088 34371778
    [Google Scholar]
  155. ShrewsburyS.B. The upper nasal space: Option for systemic drug delivery, mucosal vaccines and “nose-to-brain”.Pharmaceutics2023156172010.3390/pharmaceutics15061720 37376168
    [Google Scholar]
  156. VanpariyaF. ShiroyaM. MalaviyaM. Emulgel: A review.Int. J. Sci. Res.202110847
    [Google Scholar]
  157. AnandK. RayS. RahmanM. Nano-emulgel: Emerging as a smarter topical lipidic emulsion-based nanocarrier for skin healthcare applications.Recent Patents Anti-Infect. Drug Disc.2019141163510.2174/1574891X14666190717111531 31333141
    [Google Scholar]
  158. MandalS. VishvakarmaP. Nanoemulgel: A smarter topical lipidic emulsion-based nanocarrier.Ind J Pharm Edu Res2023573ss481s49810.5530/ijper.57.3s.56
    [Google Scholar]
  159. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Nanosized nasal emulgel of resveratrol: Preparation, optimization, in vitro evaluation and in vivo pharmacokinetic study.Drug Dev. Ind. Pharm.201945101624163410.1080/03639045.2019.1648500 31353967
    [Google Scholar]
  160. AlyoussefA. El-GogaryR.I. AhmedR.F. Ahmed FaridO.A.H. BakeerR.M. NasrM. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds.J. Drug Deliv. Sci. Technol.20216210236010.1016/j.jddst.2021.102360
    [Google Scholar]
  161. OjhaB. JainV.K. GuptaS. TalegaonkarS. JainK. Nanoemulgel: A promising novel formulation for treatment of skin ailments.Polym. Bull.20227974441446510.1007/s00289‑021‑03729‑3
    [Google Scholar]
  162. DonthiM.R. MunnangiS.R. KrishnaK.V. SahaR.N. SinghviG. DubeyS.K. Nanoemulgel: A novel nano carrier as a tool for topical drug delivery.Pharmaceutics202315116410.3390/pharmaceutics15010164 36678794
    [Google Scholar]
  163. VermaA. JainA. TiwariA. JainS.K. Emulgels: Application potential in drug delivery.Functional Biopolymers201834337110.1007/978‑3‑319‑66417‑0_11
    [Google Scholar]
  164. GuptaP.K. BhandariN. ShahH. KhanchandaniV. KeerthanaR. NagarajanV. An update on nanoemulsions using nanosized liquid in liquid colloidal systems.Nanoemulsions: Prop Fabric Appl201911114
    [Google Scholar]
  165. LeongT.S.H. WoosterT.J. KentishS.E. AshokkumarM. Minimising oil droplet size using ultrasonic emulsification.Ultrason. Sonochem.200916672172710.1016/j.ultsonch.2009.02.008 19321375
    [Google Scholar]
  166. BernardiD.S. PereiraT.A. MacielN.R. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments.J. Nanobiotechnology2011914410.1186/1477‑3155‑9‑44 21952107
    [Google Scholar]
  167. MalveyS. RaoJ.V. ArumugamK.M. Transdermal drug delivery system: A mini review.Pharma Innov.20198181197
    [Google Scholar]
  168. Al-BukhaitiW. NomanA. WangH. Emulsions: Micro and nano-emulsions and their applications in industries—A mini-review.Int. J. Agric. Innov. Res.201876973
    [Google Scholar]
  169. WeissJ. GaysinskyS. DavidsonM. McClementsJ. Nanostructured encapsulation systems: Food antimicrobials. In: Global issues in food science and technology.Elsevier200942547910.1016/B978‑0‑12‑374124‑0.00024‑7
    [Google Scholar]
  170. SrikanthD. GopiD. SunilC. MichaelK. RawsonA. Proteins as fat replacers in the food industry. In: Fat Mimetics for Food Applications.Wiley202313315410.1002/9781119780045.ch8
    [Google Scholar]
  171. BotA. FlöterE. Karbstein-SchuchmannH.P. RibeiroH.S. Emulsilll. In: Product design and engineering: Formulation of gels and pastes.Wiley201310.1002/9783527654741.ch11
    [Google Scholar]
  172. WangY.H. WanZ.L. YangX.Q. WangJ.M. GuoJ. LinY. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery.Food Hydrocoll.201654404810.1016/j.foodhyd.2015.09.020
    [Google Scholar]
  173. MartinsS. SarmentoB. FerreiraD.C. SoutoE.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles.Int. J. Nanomedicine200724595607 18203427
    [Google Scholar]
  174. BinksB.P. YinD. Pickering emulsions stabilized by hydrophilic nanoparticles: In situ surface modification by oil.Soft Matter201612326858686710.1039/C6SM01214K 27452321
    [Google Scholar]
  175. PangeniR. SharmaS. MustafaG. AliJ. BabootaS. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress.Nanotechnology2014254848510210.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  176. KottaS. Mubarak AldawsariH. Badr-EldinS.M. AlhakamyN.A. MdS. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation.Food Chem.202135712972110.1016/j.foodchem.2021.129721 33866243
    [Google Scholar]
  177. NiraleP. PaulA. YadavK.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s.Life Sci.202024511739410.1016/j.lfs.2020.117394 32017870
    [Google Scholar]
  178. NouriZ. BarfarA. PersehS. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases.J. Nanobiotechnology202422146310.1186/s12951‑024‑02681‑4 39095888
    [Google Scholar]
  179. LiuJ. LiuJ. MuW. Delivery strategy to enhance the therapeutic efficacy of Liver Fibrosis via Nanoparticle Drug Delivery systems.ACS Nano20241832208612088510.1021/acsnano.4c02380 39082637
    [Google Scholar]
  180. BiglioneC. Neumann-TranT.M.P. KanwalS. KlingerD. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates.J Polym Sci202159222665270310.1002/pol.20210508
    [Google Scholar]
  181. HouS. BaiL. LuD. DuanH. Interfacial colloidal self-assembly for functional materials.Acc. Chem. Res.202356774075110.1021/acs.accounts.2c00705 36920352
    [Google Scholar]
  182. LiY. LiX. WeiL. YeJ. Advancements in mitochondrial-targeted nanotherapeutics: Overcoming biological obstacles and optimizing drug delivery.Front. Immunol.202415145198910.3389/fimmu.2024.1451989 39483479
    [Google Scholar]
  183. de Oca-ÁvalosJ.M.M. CandalR.J. HerreraM.L. Nanoemulsions: Stability and physical properties.Curr. Opin. Food Sci.2017161610.1016/j.cofs.2017.06.003
    [Google Scholar]
  184. KarthikP. EzhilarasiP.N. AnandharamakrishnanC. Challenges associated in stability of food grade nanoemulsions.Crit. Rev. Food Sci. Nutr.20175771435145010.1080/10408398.2015.1006767 26114624
    [Google Scholar]
  185. MariyateJ. BeraA. A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery.J. Mol. Liq.202235311879110.1016/j.molliq.2022.118791
    [Google Scholar]
  186. SyedH.K. PehK.K. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram.Acta Pol. Pharm.2014712301309 25272651
    [Google Scholar]
  187. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  188. RoyA. NishchayaK. RaiV.K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances.Expert Opin. Drug Deliv.202219330331910.1080/17425247.2022.2045944 35196938
    [Google Scholar]
  189. LémeryE. BriançonS. ChevalierY. Skin toxicity of surfactants: Structure/toxicity relationships.Colloids Surf. A Physicochem. Eng. Asp.201546916617910.1016/j.colsurfa.2015.01.019
    [Google Scholar]
  190. PahwaR PalS SarohaK WaliyanP KumarM. Transferosomes: Unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci 20211150018
    [Google Scholar]
  191. RasheedM.S. AnsariS.F. ShahzadiI. Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model.Sci. Rep.20221211981310.1038/s41598‑022‑23103‑1 36396950
    [Google Scholar]
  192. RajanR. JoseS. Biju MukundV.P. VasudevanD. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.85524 22171309
    [Google Scholar]
  193. AnushaV. Transferosomes-A novel vesicular system.Res. J. Pharm. Dos. Forms Technol.201464286
    [Google Scholar]
  194. SasikalaA. Transferosomes a new transformation in research: A review.J. Sci. Res. Rep.20212795610510.9734/jsrr/2021/v27i930437
    [Google Scholar]
  195. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  196. AL Shuwaili AH Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline.Eur. J. Pharm. Biopharm.201610210111410.1016/j.ejpb.2016.02.013 26925505
    [Google Scholar]
  197. MadhumithaV. SangeethaS. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin.Res J Pharm Technol20201352493250110.5958/0974‑360X.2020.00445.X
    [Google Scholar]
  198. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: A novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  199. PirvuC.D. HlevcaC. OrtanA. PrisadaR. Elastic vesicles as drugs carriers through the skin.Farmacia2010582128135
    [Google Scholar]
  200. KumarA. Transferosome: A recent approach for transdermal drug delivery.J. Drug Deliv. Ther.201885-s10010410.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  201. SachanR. ParasharT. SoniyaS.V. SinghG. TyagiS. PatelC. Drug carrier transfersomes: A novel tool for transdermal drug delivery system.Int J Res Dev Pharm Life Sci201322309316
    [Google Scholar]
  202. KulkarniP. YadavJ. VaidyaK. GandhiP. Transferosomes: An emerging tool for transdermal drug delivery.Int. J. Pharm. Sci. Res.201124735
    [Google Scholar]
  203. PawarA.Y. Transfersome: A novel technique which improves transdermal permeability.Asian J. Pharm.20161004
    [Google Scholar]
  204. ModiC. BharadiaP. Transfersomes: New dominants for transdermal drug delivery.Am J Pharm Tech Res2012237191
    [Google Scholar]
  205. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: In vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination.J. Drug Target.201927101127113410.1080/1061186X.2019.1608553 31094230
    [Google Scholar]
  206. MatharooN. MohdH. Michniak-KohnB. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e191810.1002/wnan.1918 37527953
    [Google Scholar]
  207. SapkotaR. DashA.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  208. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials 2018814210.3390/nano8010042 29342965
    [Google Scholar]
  209. ElmowafyM. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation.Colloids Surf. B Biointerfaces202120311174810.1016/j.colsurfb.2021.111748 33853001
    [Google Scholar]
  210. ShresthaH. BalaR. AroraS. Lipid‐based drug delivery systems.J. Pharm. 201420141801820 26556202
    [Google Scholar]
  211. KumbharA.B. RakdeA.K. ChaudhariP. In situ gel forming injectable drug delivery system.Int. J. Pharm. Sci. Res.201342597
    [Google Scholar]
  212. LiowS.S. DouQ. KaiD. Thermogels: In situ gelling biomaterial.ACS Biomater. Sci. Eng.20162329531610.1021/acsbiomaterials.5b00515 33429534
    [Google Scholar]
  213. KolawoleO.M. CookM.T. In situ gelling drug delivery systems for topical drug delivery.Eur. J. Pharm. Biopharm.2023184364910.1016/j.ejpb.2023.01.007 36642283
    [Google Scholar]
  214. KouchakM. In situ gelling systems for drug delivery.Brieflands201410.17795/jjnpp‑20126
    [Google Scholar]
  215. MohantyD. BakshiV. SimharajuN. HaqueM.A. SahooC.K. A review on in situ gel: A novel drug delivery system.Int. J. Pharm. Sci. Rev. Res.2018501175181
    [Google Scholar]
  216. KaurP. GargT. RathG. GoyalA.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane.Artif. Cells Nanomed. Biotechnol.201644411671176 25749276
    [Google Scholar]
  217. AiwaleB.V. ChaudhariB.P. VelhalA.B. RedasaniV.K. A review on in situ gel of gastro retentive drug delivery system.Asian J Res Pharm Sci202212431432010.52711/2231‑5659.2022.00054
    [Google Scholar]
  218. HB N. In-situ gel: New trends in controlled and sustained drug delivery system.Int. J. Pharm. Tech. Res.20102213981408
    [Google Scholar]
  219. MadanM. BajajA. LewisS. UdupaN. BaigJ.A. In situ forming polymeric drug delivery systems.Indian J. Pharm. Sci.200971324225110.4103/0250‑474X.56015 20490289
    [Google Scholar]
  220. DevasaniS.R. DevA. RathodS. DeshmukhG. An overview of in situ gelling systems.Pharmaceut Biolog Evaluat2016316069
    [Google Scholar]
  221. HaoJ. ZhaoJ. ZhangS. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.Colloids Surf. B Biointerfaces201614737638610.1016/j.colsurfb.2016.08.011 27566226
    [Google Scholar]
  222. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study.AAPS PharmSciTech201920518110.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  223. RajputA.P. ButaniS.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization.J. Drug Deliv. Sci. Technol.20195121422310.1016/j.jddst.2019.01.040
    [Google Scholar]
  224. GargA. AgrawalR. Singh ChauhanC. DeshmukhR. In-situ gel: A smart carrier for drug delivery.Int. J. Pharm.202465212381910.1016/j.ijpharm.2024.123819 38242256
    [Google Scholar]
  225. RacanielloG.F. SilvestriT. PistoneM. Innovative pharmaceutical techniques for Paediatric dosage forms: A systematic review on 3D printing, prilling/vibration and microfluidic platform.J. Pharm. Sci.202411371726174810.1016/j.xphs.2024.04.001 38582283
    [Google Scholar]
  226. HatamiH. MojahedianM.M. KesharwaniP. SahebkarA. Advancing personalized medicine with 3D printed combination drug therapies: A comprehensive review of application in various conditions.Eur. Polym. J.202421511324510.1016/j.eurpolymj.2024.113245
    [Google Scholar]
  227. DesaiN. RanaD. SalaveS. Chitosan: A potential biopolymer in drug delivery and biomedical applications.Pharmaceutics2023154131310.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  228. Alquisiras-BurgosI. González-HerreraI.G. Alcalá-AlcaláS. AguileraP. Nose-to brain delivery of resveratrol, a non-invasive method for the treatment of cerebral ischemia.Drugs and Drug Candidates20243110212510.3390/ddc3010007
    [Google Scholar]
  229. Markowicz-PiaseckaM. DarłakP. MarkiewiczA. Current approaches to facilitate improved drug delivery to the central nervous system.Eur. J. Pharm. Biopharm.202218124926210.1016/j.ejpb.2022.11.003 36372271
    [Google Scholar]
  230. MisraS.K. PathakK. Nose-to-brain targeting via nanoemulsion: Significance and evidence.Colloids and Interfaces2023712310.3390/colloids7010023
    [Google Scholar]
  231. CunhaS. ForbesB. Sousa LoboJ.M. SilvaA.C. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels.Int. J. Nanomedicine2021164373439010.2147/IJN.S305851 34234432
    [Google Scholar]
  232. PiresP.C. Paiva-SantosA.C. VeigaF. Liposome-derived nanosystems for the treatment of behavioral and neurodegenerative diseases: The promise of niosomes, transfersomes, and ethosomes for increased brain drug bioavailability.Pharmaceuticals20231610142410.3390/ph16101424 37895895
    [Google Scholar]
  233. AbouElhassanK.M. SarhanH.A. HusseinA.K. TayeA. AhmedY.M. SafwatM.A. Brain targeting of citicoline sodium via hyaluronic acid-decorated novel nano-transbilosomes for mitigation of Alzheimer’s disease in a rat model: formulation, optimization, in vitro and in vivo assessment.Int. J. Nanomedicine2022176347637610.2147/IJN.S381353 36540376
    [Google Scholar]
  234. WaniS.N. SinghS. SharmaN. ZahoorI. GrewalS. GuptaS. Transferosome-based intranasal drug delivery systems for the management of schizophrenia: A futuristic approach.Bionanoscience2023119
    [Google Scholar]
  235. ShaitoA. PosadinoA.M. YounesN. Potential adverse effects of resveratrol: A literature review.Int. J. Mol. Sci.2020216208410.3390/ijms21062084 32197410
    [Google Scholar]
  236. SalehiB. MishraA.P. NigamM. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611337079250115071933
Loading
/content/journals/cvp/10.2174/0115701611337079250115071933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test