Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

With the aging population on the rise, the higher prevalence of atrial tachyarrhythmia is emerging as a significant healthcare concern. Atrial fibrillation (AF) stands out as the most common atrial tachyarrhythmia, potentially leading to adverse outcomes, such as stroke, heart failure (HF), or conduction dysfunction. Furthermore, AF may serve as a manifestation of underlying atrial cardiomyopathy, which forms the structural and electrical substrate for arrhythmias. Atrial cardiomyopathy is characterized by structural and electrical remodeling of the atria, resulting in impaired mechanical function and the generation of arrhythmias. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have recently emerged as a novel medical treatment for HF. Their use has been associated with a reduced incidence of new-onset AF, potentially attributing to the improvement of atrial cardiomyopathy. This effect is achieved through the regulation of glucose utilization and energy consumption within the myocardium. It is worth noting that the sirtuin signaling pathway plays a crucial role in regulating energy consumption, especially in the presence of increased oxidative stress and fibrosis. This pathway also exerts a significant influence on various cardiovascular diseases. This review aims to provide a comprehensive summary of the involvement of the sirtuin signaling pathway in cardiovascular diseases, with a specific focus on atrial cardiomyopathy and AF and the potential molecular mechanisms of SGLT2is in the sirtuin signaling pathway and atrial cardiomyopathy.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611336403250122100104
2025-01-31
2025-11-14
Loading full text...

Full text loading...

References

  1. EssienU.R. KornejJ. JohnsonA.E. SchulsonL.B. BenjaminE.J. MagnaniJ.W. Social determinants of atrial fibrillation.Nat. Rev. Cardiol.2021181176377310.1038/s41569‑021‑00561‑0 34079095
    [Google Scholar]
  2. WijffelsM.C.E.F. KirchhofC.J.H.J. DorlandR. AllessieM.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats.Circulation19959271954196810.1161/01.CIR.92.7.1954 7671380
    [Google Scholar]
  3. DobrevD. Electrical remodeling in atrial fibrillation.Herz200631210811210.1007/s00059‑006‑2787‑9 16738832
    [Google Scholar]
  4. FranzM.R. JamalS.M. NarayanS.M. The role of action potential alternans in the initiation of atrial fibrillation in humans: A review and future directions.Europace201214Suppl. 5v58v6410.1093/europace/eus273 23104916
    [Google Scholar]
  5. BisbalF. BaranchukA. BraunwaldE. Bayés de LunaA. Bayés-GenísA. Atrial failure as a clinical entity.J. Am. Coll. Cardiol.202075222223210.1016/j.jacc.2019.11.013 31948652
    [Google Scholar]
  6. AnterE. JessupM. CallansD.J. Atrial fibrillation and heart failure: Treatment considerations for a dual epidemic.Circulation2009119182516252510.1161/CIRCULATIONAHA.108.821306 19433768
    [Google Scholar]
  7. KoniariI. ArtopoulouE. VelissarisD. KounisN. TsigkasG. Atrial fibrillation in patients with systolic heart failure: Pathophysiology mechanisms and management.J. Geriatr. Cardiol.2021185376397 34149826
    [Google Scholar]
  8. McMurrayJ.J.V. SolomonS.D. InzucchiS.E. Dapagliflozin in patients with heart failure and reduced ejection fraction.N. Engl. J. Med.2019381211995200810.1056/NEJMoa1911303 31535829
    [Google Scholar]
  9. PackerM. AnkerS.D. ButlerJ. Cardiovascular and renal outcomes with empagliflozin in heart failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa2022190 32865377
    [Google Scholar]
  10. AnkerS.D. ButlerJ. FilippatosG. Empagliflozin in heart failure with a preserved ejection fraction.N. Engl. J. Med.2021385161451146110.1056/NEJMoa2107038 34449189
    [Google Scholar]
  11. SolomonS.D. McMurrayJ.J.V. ClaggettB. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction.N. Engl. J. Med.2022387121089109810.1056/NEJMoa2206286 36027570
    [Google Scholar]
  12. LopaschukG.D. VermaS. Mechanisms of cardiovascular benefits of Sodium Glucose Co-Transporter 2 (SGLT2) inhibitors.JACC Basic Transl. Sci.20205663264410.1016/j.jacbts.2020.02.004 32613148
    [Google Scholar]
  13. PackerM. Cardioprotective effects of sirtuin-1 and its downstream effectors.Circ. Heart Fail.2020139e00719710.1161/CIRCHEARTFAILURE.120.007197 32894987
    [Google Scholar]
  14. ZelnikerT.A. BonacaM.P. FurtadoR.H.M. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus.Circulation2020141151227123410.1161/CIRCULATIONAHA.119.044183 31983236
    [Google Scholar]
  15. WangM. ZhangY. WangZ. LiuD. MaoS. LiangB. The effectiveness of SGLT2 inhibitor in the incidence of atrial fibrillation/atrial flutter in patients with type 2 diabetes mellitus/heart failure: A systematic review and meta-analysis.J. Thorac. Dis.20221451620163710.21037/jtd‑22‑550 35693625
    [Google Scholar]
  16. GalP. MarroucheN.F. Magnetic resonance imaging of atrial fibrosis: Redefining atrial fibrillation to a syndrome.Eur. Heart J.2017381141910.1093/eurheartj/ehv514 26409008
    [Google Scholar]
  17. GoetteA. KalmanJ.M. AguinagaL. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication.Heart Rhythm2017141e3e4010.1016/j.hrthm.2016.05.028 27320515
    [Google Scholar]
  18. GoetteA. LendeckelU. Atrial cardiomyopathy: Pathophysiology and clinical consequences.Cells20211010260510.3390/cells10102605 34685585
    [Google Scholar]
  19. CorradiD. CallegariS. MaestriR. Differential structural remodeling of the left-atrial posterior wall in patients affected by mitral regurgitation with or without persistent atrial fibrillation: A morphological and molecular study.J. Cardiovasc. Electrophysiol.201223327127910.1111/j.1540‑8167.2011.02187.x 21954878
    [Google Scholar]
  20. LiM. NingY. TseG. Atrial cardiomyopathy: From cell to bedside.ESC Heart Fail.2022963768378410.1002/ehf2.14089 35920287
    [Google Scholar]
  21. SchramG. PourrierM. MelnykP. NattelS. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function.Circ. Res.200290993995010.1161/01.RES.0000018627.89528.6F 12016259
    [Google Scholar]
  22. EhrlichJ.R. BiliczkiP. HohnloserS.H. NattelS. Atrial-selective approaches for the treatment of atrial fibrillation.J. Am. Coll. Cardiol.200851878779210.1016/j.jacc.2007.08.067 18294561
    [Google Scholar]
  23. ChaldoupiS.M. LohP. HauerR.N.W. de BakkerJ.M.T. van RijenH.V.M. The role of connexin40 in atrial fibrillation.Cardiovasc. Res.2009841152310.1093/cvr/cvp203 19535379
    [Google Scholar]
  24. GemelJ. LevyA.E. SimonA.R. Connexin40 abnormalities and atrial fibrillation in the human heart.J. Mol. Cell. Cardiol.20147615916810.1016/j.yjmcc.2014.08.021 25200600
    [Google Scholar]
  25. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R46210.1016/j.cub.2014.03.034 24845678
    [Google Scholar]
  26. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/8416763 28819546
    [Google Scholar]
  27. YangK.C. DudleyS.C.Jr Oxidative stress and atrial fibrillation: Finding a missing piece to the puzzle.Circulation2013128161724172610.1161/CIRCULATIONAHA.113.005837 24030497
    [Google Scholar]
  28. StaerkL. ShererJ.A. KoD. BenjaminE.J. HelmR.H. Atrial fibrillation.Circ. Res.201712091501151710.1161/CIRCRESAHA.117.309732 28450367
    [Google Scholar]
  29. NakagawaT. GuarenteL. Sirtuins at a glance.J. Cell Sci.2011124683383810.1242/jcs.081067 21378304
    [Google Scholar]
  30. SinghC.K. ChhabraG. NdiayeM.A. Garcia-PetersonL.M. MackN.J. AhmadN. The role of sirtuins in antioxidant and redox signaling.Antioxid. Redox Signal.201828864366110.1089/ars.2017.7290 28891317
    [Google Scholar]
  31. KupisW. PałygaJ. TomalE. NiewiadomskaE. The role of sirtuins in cellular homeostasis.J. Physiol. Biochem.201672337138010.1007/s13105‑016‑0492‑6 27154583
    [Google Scholar]
  32. LiX. KazganN. Mammalian sirtuins and energy metabolism.Int. J. Biol. Sci.20117557558710.7150/ijbs.7.575 21614150
    [Google Scholar]
  33. ZulloA. SimoneE. GrimaldiM. Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes.Nutr. Metab. Cardiovasc. Dis.201828441842410.1016/j.numecd.2018.02.004 29499851
    [Google Scholar]
  34. ChenB. ZangW. WangJ. The chemical biology of sirtuins.Chem. Soc. Rev.201544155246526410.1039/C4CS00373J 25955411
    [Google Scholar]
  35. Treviño-SaldañaN. García-RivasG. Regulation of sirtuin‐mediated protein deacetylation by cardioprotective phytochemicals.Oxid. Med. Cell. Longev.201720171175030610.1155/2017/1750306 29234485
    [Google Scholar]
  36. MatsushimaS. SadoshimaJ. The role of sirtuins in cardiac disease.Am. J. Physiol. Heart Circ. Physiol.20153099H1375H138910.1152/ajpheart.00053.2015 26232232
    [Google Scholar]
  37. FinkelT. DengC.X. MostoslavskyR. Recent progress in the biology and physiology of sirtuins.Nature2009460725558759110.1038/nature08197 19641587
    [Google Scholar]
  38. HanL. TangY. LiS. Protective mechanism of SIRT1 on Hcy‐induced atrial fibrosis mediated by TRPC3.J. Cell. Mol. Med.202024148851010.1111/jcmm.14757 31680473
    [Google Scholar]
  39. ZhangY. GaoF. GongH. Intermittent fasting attenuates obesity-related atrial fibrillation via SIRT3-mediated insulin resistance mitigation.Biochim. Biophys. Acta Mol. Basis Dis.20231869416663810.1016/j.bbadis.2023.166638 36657499
    [Google Scholar]
  40. PlanavilaA. IglesiasR. GiraltM. VillarroyaF. Sirt1 acts in association with PPAR to protect the heart from hypertrophy, metabolic dysregulation, and inflammation.Cardiovasc. Res.201190227628410.1093/cvr/cvq376 21115502
    [Google Scholar]
  41. VidavalurR. OtaniH. SingalP.K. MaulikN. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited.Exp. Clin. Cardiol.2006113217225 18651034
    [Google Scholar]
  42. ChenC.J. YuW. FuY.C. WangX. LiJ.L. WangW. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1–FoxO1 pathway.Biochem. Biophys. Res. Commun.2009378338939310.1016/j.bbrc.2008.11.110 19059213
    [Google Scholar]
  43. HeY. LuX. ChenT. Resveratrol protects against myocardial ischemic injury via the inhibition of NF κB dependent inflammation and the enhancement of antioxidant defenses.Int. J. Mol. Med.20214732910.3892/ijmm.2021.4862 33537801
    [Google Scholar]
  44. ZhangQ. WangZ. ChenH. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice.Cardiovasc. Res.200880219119910.1093/cvr/cvn224 18689793
    [Google Scholar]
  45. MattagajasinghI. KimC.S. NaqviA. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase.Proc. Natl. Acad. Sci. USA200710437148551486010.1073/pnas.0704329104 17785417
    [Google Scholar]
  46. AlcendorR.R. GaoS. ZhaiP. Sirt1 regulates aging and resistance to oxidative stress in the heart.Circ. Res.2007100101512152110.1161/01.RES.0000267723.65696.4a 17446436
    [Google Scholar]
  47. ChongZ.Z. KangJ.Q. MaieseK. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases.Circulation2002106232973297910.1161/01.CIR.0000039103.58920.1F 12460881
    [Google Scholar]
  48. ChongZ.Z. MaieseK. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control of cell growth, inflammation, and injury.Histol. Histopathol.2007221112511267 17647198
    [Google Scholar]
  49. MaieseK. ChongZ.Z. HouJ. ShangY.C. The vitamin nicotinamide: Translating nutrition into clinical care.Molecules20091493446348510.3390/molecules14093446 19783937
    [Google Scholar]
  50. ChongZ.Z. WangS. ShangY.C. MaieseK. Targeting cardiovascular disease with novel SIRT1 pathways.Future Cardiol.2012818910010.2217/fca.11.76 22185448
    [Google Scholar]
  51. ZhangD. LiB. LiB. TangY. Regulation of left atrial fibrosis induced by mitral regurgitation by SIRT1.Sci. Rep.2020101727810.1038/s41598‑020‑64308‑6 32350389
    [Google Scholar]
  52. LeeW.C. LinY.S. ChenM.J. Downregulation of SIRT1 and GADD45G genes and left atrial fibrosis induced by right ventricular dependent pacing in a complete atrioventricular block pig model.Biomolecules and Biomedicine202424236037310.17305/bb.2023.9636 37676057
    [Google Scholar]
  53. ZhengM. DuX. ZhaoL. SunH. ChenM. YangX. Elevated plasma Sirtuin2 level predicts heart failure after acute myocardial infarction.J. Thorac. Dis.2021131505910.21037/jtd‑20‑2234 33569184
    [Google Scholar]
  54. YangW. GaoF. ZhangP. Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction.PLoS One2017124e017624510.1371/journal.pone.0176245 28445509
    [Google Scholar]
  55. LynnE.G. McLeodC.J. GordonJ.P. BaoJ. SackM.N. SIRT2 is a negative regulator of anoxia–reoxygenation tolerance via regulation of 14‐3‐3 ζ and BAD in H9c2 cells.FEBS Lett.2008582192857286210.1016/j.febslet.2008.07.016 18640115
    [Google Scholar]
  56. KatareP.B. NizamiH.L. ParameshaB. DindaA.K. BanerjeeS.K. Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation.Sci. Rep.20201011923210.1038/s41598‑020‑75301‑4 33159115
    [Google Scholar]
  57. ZhangB. MaY. XiangC. SIRT2 decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice by modulating macrophage polarization.Biomed. Pharmacother.2018971238124210.1016/j.biopha.2017.11.061 29145149
    [Google Scholar]
  58. ZhangW. LiuD. RenJ. ZhouP. HanX. Overexpression of Sirtuin2 prevents high glucose-induced vascular endothelial cell injury by regulating the p53 and NF-κB signaling pathways.Biotechnol. Lett.201840227127810.1007/s10529‑017‑2487‑y 29189925
    [Google Scholar]
  59. WangF. NguyenM. QinF.X.F. TongQ. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction.Aging Cell20076450551410.1111/j.1474‑9726.2007.00304.x 17521387
    [Google Scholar]
  60. Hashimoto-KomatsuA. HiraseT. AsakaM. NodeK. Angiotensin II induces microtubule reorganization mediated by a deacetylase SIRT2 in endothelial cells.Hypertens. Res.201134894995610.1038/hr.2011.64 21677656
    [Google Scholar]
  61. SarikhaniM. MaityS. MishraS. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis.J. Biol. Chem.2018293145281529410.1074/jbc.RA117.000915 29440391
    [Google Scholar]
  62. NorthB.J. RosenbergM.A. JeganathanK.B. SIRT 2 induces the checkpoint kinase BubR1 to increase lifespan.EMBO J.201433131438145310.15252/embj.201386907 24825348
    [Google Scholar]
  63. Parodi-RullánR.M. Chapa-DubocqX. RullánP.J. JangS. JavadovS. High sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities.Front. Pharmacol.2017827510.3389/fphar.2017.00275 28559847
    [Google Scholar]
  64. HeX. ZengH. ChenJ.X. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia.Int. J. Cardiol.201621534935710.1016/j.ijcard.2016.04.092 27128560
    [Google Scholar]
  65. ChenM. ZhuX. RanL. LangH. YiL. MiM. Trimethylamine‐N‐Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3‐SOD2‐mtROS signaling pathway.J. Am. Heart Assoc.201769e00634710.1161/JAHA.117.006347 28871042
    [Google Scholar]
  66. WinnikS. GaulD.S. PreitnerF. Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: Implications for cardiovascular risk factor development.Basic Res. Cardiol.2014109139910.1007/s00395‑013‑0399‑0 24370889
    [Google Scholar]
  67. GrillonJ.M. JohnsonK.R. KotloK. DanzigerR.S. Non-histone lysine acetylated proteins in heart failure.Biochim. Biophys. Acta Mol. Basis Dis.20121822460761410.1016/j.bbadis.2011.11.016 22155497
    [Google Scholar]
  68. FengX. WangY. ChenW. SIRT3 inhibits cardiac hypertrophy by regulating PARP-1 activity.Aging (Albany NY)20201254178419210.18632/aging.102862 32139662
    [Google Scholar]
  69. YouJ. YueZ. ChenS. Receptor‐interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes.Acta Physiol. (Oxf.)20172201587110.1111/apha.12800 27614093
    [Google Scholar]
  70. CheungK.G. ColeL.K. XiangB. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes.J. Biol. Chem.201529017109811099310.1074/jbc.M114.607960 25759382
    [Google Scholar]
  71. PillaiV.B. BinduS. SharpW. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice.Am. J. Physiol. Heart Circ. Physiol.20163108H962H97210.1152/ajpheart.00832.2015 26873966
    [Google Scholar]
  72. YuW. GaoB. LiN. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy.Biochim. Biophys. Acta Mol. Basis Dis.2017186381973198310.1016/j.bbadis.2016.10.021 27794418
    [Google Scholar]
  73. AlrobO.A. SankaralingamS. MaC. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.Cardiovasc. Res.2014103448549710.1093/cvr/cvu156 24966184
    [Google Scholar]
  74. LiM. LiC. YeZ. Sirt3 modulates fatty acid oxidation and attenuates cisplatin‐induced AKI in mice.J. Cell. Mol. Med.20202495109512110.1111/jcmm.15148 32281286
    [Google Scholar]
  75. ZengH. VakaV.R. HeX. BoozG.W. ChenJ.X. High‐fat diet induces cardiac remodelling and dysfunction: Assessment of the role played by SIRT 3 loss.J. Cell. Mol. Med.20151981847185610.1111/jcmm.12556 25782072
    [Google Scholar]
  76. LiuG.Z. XuW. ZangY.X. Honokiol inhibits atrial metabolic remodeling in atrial fibrillation through Sirt3 pathway.Front. Pharmacol.20221381327210.3389/fphar.2022.813272 35370645
    [Google Scholar]
  77. TaoY. HuangC. HuangY. SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells.Cardiovasc. Toxicol.201515321722310.1007/s12012‑014‑9287‑6 25331589
    [Google Scholar]
  78. HuangP. RiordanS.M. HeruthD.P. GrigoryevD.N. ZhangL.Q. YeS.Q. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells.Oncotarget2015613108121082410.18632/oncotarget.3580 25926556
    [Google Scholar]
  79. LuoY.X. TangX. AnX.Z. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity.Eur. Heart J.2017381813891398 27099261
    [Google Scholar]
  80. HanY. ZhouS. CoetzeeS. ChenA. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise.Front. Physiol.201910100610.3389/fphys.2019.01006 31447696
    [Google Scholar]
  81. ZhouB. XiaoM. HuH. Cardioprotective role of SIRT5 in response to acute ischemia through a novel liver-cardiac crosstalk mechanism.Front. Cell Dev. Biol.2021968755910.3389/fcell.2021.687559 34368135
    [Google Scholar]
  82. ChangX. ZhangT. WangJ. SIRT5‐related desuccinylation modification contributes to Quercetin‐induced protection against heart failure and high‐glucose‐prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance.Oxid. Med. Cell. Longev.202120211587684110.1155/2021/5876841 34603599
    [Google Scholar]
  83. FabbriziE. FiorentinoF. CarafaV. AltucciL. MaiA. RotiliD. Emerging roles of SIRT5 in metabolism, cancer, and SARS-CoV-2 infection.Cells202312685210.3390/cells12060852 36980194
    [Google Scholar]
  84. GaulD.S. CalatayudN. PahlaJ. Endothelial SIRT6 deficiency promotes arterial thrombosis in mice.J. Mol. Cell. Cardiol.2023174566210.1016/j.yjmcc.2022.11.005 36414111
    [Google Scholar]
  85. LiuZ. WangJ. HuangX. LiZ. LiuP. Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice.Transl. Res.20161721829.e210.1016/j.trsl.2016.02.005 26924042
    [Google Scholar]
  86. ZiY. Yi-AnY. BingJ. Sirt6-induced autophagy restricted TREM-1-mediated pyroptosis in ox-LDL-treated endothelial cells: Relevance to prognostication of patients with acute myocardial infarction.Cell Death Discov.2019518810.1038/s41420‑019‑0168‑4 30993014
    [Google Scholar]
  87. HeJ. ZhangG. PangQ. SIRT 6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox‐ LDL condition.FEBS J.201728491324133710.1111/febs.14055 28296196
    [Google Scholar]
  88. ZhangZ.Q. RenS.C. TanY. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice.Sci. Rep.2016612391210.1038/srep23912 27045575
    [Google Scholar]
  89. XiaM. GuerraN. SukhovaG.K. Immune activation resulting from NKG2D/ligand interaction promotes atherosclerosis.Circulation2011124252933294310.1161/CIRCULATIONAHA.111.034850 22104546
    [Google Scholar]
  90. SundaresanN.R. VasudevanP. ZhongL. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun.Nat. Med.201218111643165010.1038/nm.2961 23086477
    [Google Scholar]
  91. LiY. MengX. WangW. Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure.Front. Physiol.2017839410.3389/fphys.2017.00394 28659816
    [Google Scholar]
  92. LiZ. ZhangX. GuoZ. SIRT6 suppresses NFATc4 expression and activation in cardiomyocyte hypertrophy.Front. Pharmacol.20199151910.3389/fphar.2018.01519 30670969
    [Google Scholar]
  93. RaviV. JainA. KhanD. SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity.Nucleic Acids Res.201947179115913110.1093/nar/gkz648 31372634
    [Google Scholar]
  94. MaityS. MuhamedJ. SarikhaniM. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice.J. Biol. Chem.2020295241543410.1074/jbc.RA118.007212 31744885
    [Google Scholar]
  95. TianK. LiuZ. WangJ. XuS. YouT. LiuP. Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling.Transl. Res.2015165337438610.1016/j.trsl.2014.08.008 25475987
    [Google Scholar]
  96. KhanD. AraT. RaviV. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ.Cell Rep.202135910919010.1016/j.celrep.2021.109190 34077730
    [Google Scholar]
  97. VakhrushevaO. SmolkaC. GajawadaP. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice.Circ. Res.2008102670371010.1161/CIRCRESAHA.107.164558 18239138
    [Google Scholar]
  98. YamamuraS. IzumiyaY. ArakiS. Cardiomyocyte Sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4.Hypertension20207519810810.1161/HYPERTENSIONAHA.119.13357 31735083
    [Google Scholar]
  99. LiX.T. ZhangY.P. ZhangM.W. ZhangZ.Z. ZhongJ.C. Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases.Eur. J. Pharmacol.202292517497710.1016/j.ejphar.2022.174977 35513019
    [Google Scholar]
  100. ChengK. HaoM. Mammalian Target of Rapamycin (mTOR) regulates transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition via decreased Pyruvate Kinase M2 (PKM2) expression in cervical cancer cells.Med. Sci. Monit.2017232017202810.12659/MSM.901542 28446743
    [Google Scholar]
  101. Karimi RoshanM. SoltaniA. SoleimaniA. Rezaie KahkhaieK. AfshariA.R. SoukhtanlooM. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process.Biochimie201916522923410.1016/j.biochi.2019.08.003 31401189
    [Google Scholar]
  102. LvW. ZhangL. ChengX. Apelin inhibits angiotensin II-induced atrial fibrosis and atrial fibrillation via TGF-β1/Smad2/α-SMA pathway.Front. Physiol.20201158357010.3389/fphys.2020.583570 33329030
    [Google Scholar]
  103. LiZ. WangJ. YangX. Functions of autophagy in pathological cardiac hypertrophy.Int. J. Biol. Sci.201511667267810.7150/ijbs.11883 25999790
    [Google Scholar]
  104. GiampieriF. AfrinS. Forbes-HernandezT.Y. Autophagy in human health and disease: Novel therapeutic opportunities.Antioxid. Redox Signal.201930457763410.1089/ars.2017.7234 29943652
    [Google Scholar]
  105. MazumderS. BarmanM. BandyopadhyayU. BinduS. Sirtuins as endogenous regulators of lung fibrosis: A current perspective.Life Sci.202025811820110.1016/j.lfs.2020.118201 32781070
    [Google Scholar]
  106. PonnusamyM. ZhouX. YanY. Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy.J. Pharmacol. Exp. Ther.2014350224325610.1124/jpet.113.212076 24833701
    [Google Scholar]
  107. SosulskiM.L. GongoraR. Feghali-BostwickC. LaskyJ.A. SanchezC.G. Sirtuin 3 deregulation promotes pulmonary fibrosis.J. Gerontol. A Biol. Sci. Med. Sci.2017725595602 27522058
    [Google Scholar]
  108. KunduA. DeyP. ParkJ.H. KimI.S. KwackS.J. KimH.S. EX-527 prevents the progression of high-fat diet-induced hepatic steatosis and fibrosis by upregulating SIRT4 in Zucker rats.Cells202095110110.3390/cells9051101 32365537
    [Google Scholar]
  109. HuH.H. CaoG. WuX.Q. VaziriN.D. ZhaoY.Y. Wnt signaling pathway in aging-related tissue fibrosis and therapies.Ageing Res. Rev.20206010106310.1016/j.arr.2020.101063 32272170
    [Google Scholar]
  110. Bartoli-LeonardF. WilkinsonF.L. Langford-SmithA.W.W. AlexanderM.Y. WestonR. The interplay of SIRT1 and Wnt signaling in vascular calcification.Front. Cardiovasc. Med.2018518310.3389/fcvm.2018.00183 30619890
    [Google Scholar]
  111. NguyenP. LeeS. Lorang-LeinsD. TrepelJ. SmartD.K. SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress.Mol. Cancer Res.20141291244125310.1158/1541‑7786.MCR‑14‑0223‑T 24866770
    [Google Scholar]
  112. ZhongX. HuangM. KimH.G. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells.Cell. Mol. Gastroenterol. Hepatol.202010234136410.1016/j.jcmgh.2020.04.005 32305562
    [Google Scholar]
  113. LiuF. ShangY.X. Sirtuin 6 attenuates epithelial–mesenchymal transition by suppressing the TGF-β1/Smad3 pathway and c-Jun in asthma models.Int. Immunopharmacol.20208210633310.1016/j.intimp.2020.106333 32143002
    [Google Scholar]
  114. CaiJ. LiuZ. HuangX. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression.Kidney Int.202097110611810.1016/j.kint.2019.08.028 31787254
    [Google Scholar]
  115. WoodcockH.V. EleyJ.D. GuillotinD. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis.Nat. Commun.2019101610.1038/s41467‑018‑07858‑8 30602778
    [Google Scholar]
  116. PanH. FinkelT. Key proteins and pathways that regulate lifespan.J. Biol. Chem.2017292166452646010.1074/jbc.R116.771915 28264931
    [Google Scholar]
  117. SergiC. ShenF. LiuS.M. Insulin/IGF-1R, SIRT1, and FOXOs Pathways—An intriguing interaction platform for bone and osteosarcoma.Front. Endocrinol. (Lausanne)2019109310.3389/fendo.2019.00093 30881341
    [Google Scholar]
  118. DongX.C. FOXO transcription factors in non-alcoholic fatty liver disease.Liver Res.20171316817310.1016/j.livres.2017.11.004 30034912
    [Google Scholar]
  119. VivarR. HumeresC. MuñozC. FoxO1 mediates TGF-beta1-dependent cardiac myofibroblast differentiation.Biochim. Biophys. Acta Mol. Cell Res.20161863112813810.1016/j.bbamcr.2015.10.019 26518453
    [Google Scholar]
  120. WangY. XueL. LiH. ShiJ. ChenB. Knockdown of FOXO6 inhibits cell proliferation and ECM accumulation in glomerular mesangial cells cultured under high glucose condition.RSC Advances2019931741174610.1039/C8RA10547B 35518006
    [Google Scholar]
  121. VivarR. HumeresC. AnfossiR. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1.Biochim. Biophys. Acta Mol. Cell Res.20201867711869510.1016/j.bbamcr.2020.118695 32169420
    [Google Scholar]
  122. HoriY.S. KunoA. HosodaR. HorioY. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress.PLoS One201389e7387510.1371/journal.pone.0073875 24040102
    [Google Scholar]
  123. GlickD. BarthS. MacleodK.F. Autophagy: cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.2697 20225336
    [Google Scholar]
  124. ParzychK.R. KlionskyD.J. An overview of autophagy: Morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.5371 23725295
    [Google Scholar]
  125. LeeI.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation.Exp. Mol. Med.201951911110.1038/s12276‑019‑0302‑7 31492861
    [Google Scholar]
  126. ZulloA. ManciniF.P. SchleipR. WearingS. KlinglerW. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity.Wound Repair Regen.202129465066610.1111/wrr.12943 34077595
    [Google Scholar]
  127. XintarakouA. TzeisS. PsarrasS. AsvestasD. VardasP. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: Facts and gaps.Europace202022334235110.1093/europace/euaa009 31998939
    [Google Scholar]
  128. ZhaoY. DagherL. HuangC. MillerP. MarroucheN.F. Cardiac MRI to manage atrial fibrillation.Arrhythm. Electrophysiol. Rev.20209418919410.15420/aer.2020.21 33437486
    [Google Scholar]
  129. PlatonovP.G. Atrial fibrosis: An obligatory component of arrhythmia mechanisms in atrial fibrillation?J. Geriatr. Cardiol.2017144233237 28663760
    [Google Scholar]
  130. FukushimaK. KitamuraS. TsujiK. WadaJ. Sodium–glucose cotransporter 2 inhibitors work as a “Regulator” of autophagic activity in overnutrition diseases.Front. Pharmacol.20211276184210.3389/fphar.2021.761842 34744742
    [Google Scholar]
  131. UminoH. HasegawaK. MinakuchiH. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection.Sci. Rep.201881679110.1038/s41598‑018‑25054‑y 29717156
    [Google Scholar]
  132. LiS. WangN. GuoX. Fibroblast growth factor 21 regulates glucose metabolism in part by reducing renal glucose reabsorption.Biomed. Pharmacother.201810835536610.1016/j.biopha.2018.09.078 30227329
    [Google Scholar]
  133. CappettaD. EspositoG. PiegariE. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy.Int. J. Cardiol.20162059911010.1016/j.ijcard.2015.12.008 26730840
    [Google Scholar]
  134. ChenT. LiJ. LiuJ. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway.Am. J. Physiol. Heart Circ. Physiol.20153085H424H43410.1152/ajpheart.00454.2014 25527776
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611336403250122100104
Loading
/content/journals/cvp/10.2174/0115701611336403250122100104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test