Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Empagliflozin (EMPA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i), represents a novel therapeutic agent for diabetes management. Over the past decade, studies have consistently demonstrated that EMPA not only effectively lowers blood glucose levels but also confers substantial cardiovascular benefits without inducing hypoglycemia. This holds for individuals with or without diabetes, highlighting EMPA’s potential in mitigating the risk of adverse cardiovascular events and cardiovascular mortality. The underlying mechanisms driving these advantageous effects remain incompletely understood, with presently elucidated pathways encompassing blood pressure reduction, oxidative stress attenuation, anti-inflammatory properties, metabolic regulation, uric acid level modulation, inhibition of Na+/H+ exchangers, preservation of mitochondrial function, vascular protection, and regulation of myocardial autophagy. In this review, we considered the effects and mechanisms of EMPA in combating diabetic cardiomyopathy (DCM), underscoring its therapeutic relevance in addressing cardiovascular complications associated with diabetes.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611319744250116092707
2025-01-27
2025-11-14
Loading full text...

Full text loading...

References

  1. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  2. WeiJ. ZhaoY. LiangH. DuW. WangL. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy.Acta Pharm. Sin. B202212111710.1016/j.apsb.2021.08.026 35127369
    [Google Scholar]
  3. RitchieR.H. AbelE.D. Basic mechanisms of diabetic heart disease.Circ. Res.2020126111501152510.1161/CIRCRESAHA.120.315913 32437308
    [Google Scholar]
  4. KennyH.C. AbelE.D. Heart failure in type 2 diabetes mellitus.Circ. Res.2019124112114110.1161/CIRCRESAHA.118.311371 30605420
    [Google Scholar]
  5. YunJ.S. KoS.H. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes.Metabolism202112315483810.1016/j.metabol.2021.154838 34333002
    [Google Scholar]
  6. UdellJ.A. CavenderM.A. BhattD.L. ChatterjeeS. FarkouhM.E. SciricaB.M. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: A meta-analysis of randomised controlled trials.Lancet Diabetes Endocrinol.20153535636610.1016/S2213‑8587(15)00044‑3 25791290
    [Google Scholar]
  7. PackerM. SGLT2 inhibitors: Role in protective reprogramming of cardiac nutrient transport and metabolism.Nat. Rev. Cardiol.202320744346210.1038/s41569‑022‑00824‑4 36609604
    [Google Scholar]
  8. LiC. ZhangJ. XueM. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.Cardiovasc. Diabetol.20191811510.1186/s12933‑019‑0816‑2 30710997
    [Google Scholar]
  9. NagahisaT. SaishoY. Cardiorenal protection: Potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes.Diabetes Ther.20191051733175210.1007/s13300‑019‑00680‑5 31440988
    [Google Scholar]
  10. YuristaS.R. SilljéH.H.W. Oberdorf-MaassS.U. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction.Eur. J. Heart Fail.201921786287310.1002/ejhf.1473 31033127
    [Google Scholar]
  11. ZelnikerT.A. BraunwaldE. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes.J. Am. Coll. Cardiol.201872151845185510.1016/j.jacc.2018.06.040 30075873
    [Google Scholar]
  12. ZinmanB. WannerC. LachinJ.M. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa1504720 26378978
    [Google Scholar]
  13. TsapasA. AvgerinosI. KaragiannisT. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes.Ann. Intern. Med.2020173427828610.7326/M20‑0864 32598218
    [Google Scholar]
  14. GriffinM. RaoV.S. Ivey-MirandaJ. Empagliflozin in heart failure.Circulation2020142111028103910.1161/CIRCULATIONAHA.120.045691 32410463
    [Google Scholar]
  15. GuoJ. SmithS.M. Newer drug treatments for type 2 diabetes.BMJ20213731171n117110.1136/bmj.n1171 33975861
    [Google Scholar]
  16. JiaG. SowersJ.R. Hypertension in diabetes: An update of basic mechanisms and clinical disease.Hypertension20217851197120510.1161/HYPERTENSIONAHA.121.17981 34601960
    [Google Scholar]
  17. OmarM. JensenJ. FrederiksenP.H. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction.J. Am. Coll. Cardiol.202076232740275110.1016/j.jacc.2020.10.005 33272368
    [Google Scholar]
  18. WolskE. JürgensM. SchouM. Randomized controlled trial of the hemodynamic effects of empagliflozin in patients with type 2 diabetes at high cardiovascular risk: The SIMPLE trial.Diabetes202271481282010.2337/db21‑0721 35061894
    [Google Scholar]
  19. NassifM.E. QintarM. WindsorS.L. Empagliflozin effects on pulmonary artery pressure in patients with heart failure.Circulation2021143171673168610.1161/CIRCULATIONAHA.120.052503 33550815
    [Google Scholar]
  20. CherneyD.Z.I. PerkinsB.A. SoleymanlouN. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.Circulation2014129558759710.1161/CIRCULATIONAHA.113.005081 24334175
    [Google Scholar]
  21. VallonV. GerasimovaM. RoseM.A. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.Am. J. Physiol. Renal Physiol.20143062F194F20410.1152/ajprenal.00520.2013 24226524
    [Google Scholar]
  22. LytvynY. BjornstadP. UdellJ.A. LovshinJ.A. CherneyD.Z.I. Sodium glucose cotransporter-2 inhibition in heart failure.Circulation2017136171643165810.1161/CIRCULATIONAHA.117.030012 29061576
    [Google Scholar]
  23. LopaschukG.D. VermaS. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors.JACC Basic Transl. Sci.20205663264410.1016/j.jacbts.2020.02.004 32613148
    [Google Scholar]
  24. KidokoroK. CherneyD.Z.I. BozovicA. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging.Circulation2019140430331510.1161/CIRCULATIONAHA.118.037418 30773020
    [Google Scholar]
  25. WannerC. InzucchiS.E. LachinJ.M. Empagliflozin and progression of kidney disease in type 2 diabetes.N. Engl. J. Med.2016375432333410.1056/NEJMoa1515920 27299675
    [Google Scholar]
  26. VallonV. VermaS. Effects of SGLT2 inhibitors on kidney and cardiovascular function.Annu. Rev. Physiol.202183150352810.1146/annurev‑physiol‑031620‑095920 33197224
    [Google Scholar]
  27. JohnsonR.J. BakrisG.L. BorghiC. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation.Am. J. Kidney Dis.201871685186510.1053/j.ajkd.2017.12.009 29496260
    [Google Scholar]
  28. DengX. ZhangC. WangP. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes.J. Clin. Endocrinol. Metab.202210771888189610.1210/clinem/dgac210 35397165
    [Google Scholar]
  29. HespA.C. SchaubJ.A. PrasadP.V. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: A promising target for newer renoprotective agents including SGLT2 inhibitors?Kidney Int.202098357958910.1016/j.kint.2020.02.041 32739206
    [Google Scholar]
  30. LuQ. YangL. XiaoJ.J. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway.Free Radic. Biol. Med.20231958910210.1016/j.freeradbiomed.2022.12.088 36581059
    [Google Scholar]
  31. NgA.C.T. DelgadoV. BorlaugB.A. BaxJ.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging.Nat. Rev. Cardiol.202118429130410.1038/s41569‑020‑00465‑5 33188304
    [Google Scholar]
  32. FiorettoP. ZambonA. RossatoM. BusettoL. VettorR. SGLT2 inhibitors and the diabetic kidney.Diabetes Care201639Suppl. 2S165S17110.2337/dcS15‑3006 27440829
    [Google Scholar]
  33. SogaF. TanakaH. TatsumiK. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure.Cardiovasc. Diabetol.201817113210.1186/s12933‑018‑0775‑z 30296931
    [Google Scholar]
  34. NishidaK. OtsuK. Inflammation and metabolic cardiomyopathy.Cardiovasc. Res.2017113438939810.1093/cvr/cvx012 28395010
    [Google Scholar]
  35. PoznyakA. GrechkoA.V. PoggioP. MyasoedovaV.A. AlfieriV. OrekhovA.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation.Int. J. Mol. Sci.2020215183510.3390/ijms21051835 32155866
    [Google Scholar]
  36. KusakaH. KoibuchiN. HasegawaY. OgawaH. Kim-MitsuyamaS. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.Cardiovasc. Diabetol.201615115710.1186/s12933‑016‑0473‑7 27835975
    [Google Scholar]
  37. CanetF. IannantuoniF. MarañonA.M. Does empagliflozin modulate leukocyte–endothelium interactions, oxidative stress, and inflammation in type 2 diabetes?Antioxidants2021108122810.3390/antiox10081228 34439476
    [Google Scholar]
  38. KangQ. YangC. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.Redox Biol.20203710179910.1016/j.redox.2020.101799 33248932
    [Google Scholar]
  39. MatsushimaS. TsutsuiH. SadoshimaJ. Physiological and pathological functions of NADPH oxidases during myocardial ischemia–reperfusion.Trends Cardiovasc. Med.201424520220510.1016/j.tcm.2014.03.003 24880746
    [Google Scholar]
  40. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a 11742414
    [Google Scholar]
  41. SabbahH.N. Targeting the mitochondria in heart failure.JACC Basic Transl. Sci.2020518810610.1016/j.jacbts.2019.07.009 32043022
    [Google Scholar]
  42. KolijnD. PabelS. TianY. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation.Cardiovasc. Res.2021117249550710.1093/cvr/cvaa123 32396609
    [Google Scholar]
  43. SteinbergG.R. HardieD.G. New insights into activation and function of the AMPK.Nat. Rev. Mol. Cell Biol.202324425527210.1038/s41580‑022‑00547‑x 36316383
    [Google Scholar]
  44. SunX. HanF. LuQ. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated ampk-mtor signaling and redox homeostasis in high-fat diet–induced obese mice.Diabetes20206961292130510.2337/db19‑0991 32234722
    [Google Scholar]
  45. ChenS. KhanZ.A. KarmazynM. ChakrabartiS. Role of endothelin‐1, sodium hydrogen exchanger‐1 and mitogen activated protein kinase (MAPK) activation in glucose‐induced cardiomyocyte hypertrophy.Diabetes Metab. Res. Rev.200723535636710.1002/dmrr.689 17024690
    [Google Scholar]
  46. UthmanL. BaartscheerA. BleijlevensB. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation.Diabetologia201861372272610.1007/s00125‑017‑4509‑7 29197997
    [Google Scholar]
  47. BaartscheerA. SchumacherC.A. WüstR.C.I. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits.Diabetologia201760356857310.1007/s00125‑016‑4134‑x 27752710
    [Google Scholar]
  48. ChungY.J. ParkK.C. TokarS. Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart.Cardiovasc. Res.2021117142794280610.1093/cvr/cvaa323 33135077
    [Google Scholar]
  49. LopaschukG.D. KarwiQ.G. TianR. WendeA.R. AbelE.D. Cardiac energy metabolism in heart failure.Circ. Res.2021128101487151310.1161/CIRCRESAHA.121.318241 33983836
    [Google Scholar]
  50. HoK.L. ZhangL. WaggC. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.Cardiovasc. Res.2019115111606161610.1093/cvr/cvz045 30778524
    [Google Scholar]
  51. VermaS. RawatS. HoK.L. Empagliflozin increases cardiac energy production in diabetes.JACC Basic Transl. Sci.20183557558710.1016/j.jacbts.2018.07.006 30456329
    [Google Scholar]
  52. AbdelganiS. KhattabA. AdamsJ. Distinct mechanisms responsible for the increase in glucose production and ketone formation caused by empagliflozin in T2DM patients.Diabetes Care202346597898410.2337/dc22‑0885 36857415
    [Google Scholar]
  53. AbdurrachimD. MandersE. NicolayK. MayouxE. PrompersJ.J. Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice.Cardiovasc. Res.2018114141843184410.1093/cvr/cvy246 30295756
    [Google Scholar]
  54. ThirunavukarasuS. JexN. ChowdharyA. Empagliflozin treatment is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes.Diabetes202170122810282210.2337/db21‑0270 34610982
    [Google Scholar]
  55. NathanD.M. LachinJ.M. BebuI. Glycemia reduction in type 2 diabetes — Microvascular and cardiovascular outcomes.N. Engl. J. Med.2022387121075108810.1056/NEJMoa2200436 36129997
    [Google Scholar]
  56. MátyásC. NémethB.T. OláhA. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus.Cardiovasc. Diabetol.201514114510.1186/s12933‑015‑0309‑x 26520063
    [Google Scholar]
  57. XueM. LiT. WangY. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice.Clin. Sci.2019133151705172010.1042/CS20190585 31337673
    [Google Scholar]
  58. AdingupuD.D. GöpelS.O. GrönrosJ. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice.Cardiovasc. Diabetol.20191811610.1186/s12933‑019‑0820‑6 30732594
    [Google Scholar]
  59. SpigoniV. FantuzziF. CarubbiC. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: Potential relevance to prevention of cardiovascular events.Cardiovasc. Diabetol.20201914610.1186/s12933‑020‑01016‑5 32264868
    [Google Scholar]
  60. JuniR.P. KusterD.W.D. GoebelM. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin.JACC Basic Transl. Sci.20194557559110.1016/j.jacbts.2019.04.003 31768475
    [Google Scholar]
  61. StevenS. OelzeM. HanfA. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats.Redox Biol.20171337038510.1016/j.redox.2017.06.009 28667906
    [Google Scholar]
  62. OelzeM. MollnauH. HoffmannN. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction.Circ. Res.20008711999100510.1161/01.RES.87.11.999 11090544
    [Google Scholar]
  63. Rovira-LlopisS. BañulsC. Diaz-MoralesN. Hernandez-MijaresA. RochaM. VictorV.M. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.Redox Biol.20171163764510.1016/j.redox.2017.01.013 28131082
    [Google Scholar]
  64. FerreiraJ.C.B. CamposJ.C. QvitN. A selective inhibitor of mitofusin 1-βIIPKC association improves heart failure outcome in rats.Nat. Commun.201910132910.1038/s41467‑018‑08276‑6 30659190
    [Google Scholar]
  65. CipolatS. de BritoO.M. Dal ZilioB. ScorranoL. OPA1 requires mitofusin 1 to promote mitochondrial fusion.Proc. Natl. Acad. Sci. USA200410145159271593210.1073/pnas.0407043101 15509649
    [Google Scholar]
  66. RenL. HanF. XuanL. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation.Free Radic. Biol. Med.201914535737310.1016/j.freeradbiomed.2019.10.008 31614179
    [Google Scholar]
  67. WangJ. HuangX. LiuH. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function.Oxid. Med. Cell. Longev.2022202211610.1155/2022/1122494 35585884
    [Google Scholar]
  68. ZhouH. WangS. ZhuP. HuS. ChenY. RenJ. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission.Redox Biol.20181533534610.1016/j.redox.2017.12.019 29306791
    [Google Scholar]
  69. ShaoQ. MengL. LeeS. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats.Cardiovasc. Diabetol.201918116510.1186/s12933‑019‑0964‑4 31779619
    [Google Scholar]
  70. AshrafR. KumarS. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling.Cell. Mol. Life Sci.2022791157310.1007/s00018‑022‑04595‑6 36308626
    [Google Scholar]
  71. DelbridgeL.M.D. MellorK.M. TaylorD.J. GottliebR.A. Myocardial stress and autophagy: Mechanisms and potential therapies.Nat. Rev. Cardiol.201714741242510.1038/nrcardio.2017.35 28361977
    [Google Scholar]
  72. SongS. DingY. DaiG. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation.Acta Pharmacol. Sin.202142223024110.1038/s41401‑020‑0490‑7 32770173
    [Google Scholar]
  73. CaiZ. JitkaewS. ZhaoJ. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.Nat. Cell Biol.2014161556510.1038/ncb2883 24316671
    [Google Scholar]
  74. CaoT. NiR. DingW. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes.Cardiovasc. Diabetol.202221116510.1186/s12933‑022‑01602‑9 36030201
    [Google Scholar]
  75. MadonnaR. MoscatoS. CufaroM.C. Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signalling pathway in diabetic cardiomyopathy.Cardiovasc. Res.202311951175118910.1093/cvr/cvad009 36627733
    [Google Scholar]
  76. AnkerS.D. ButlerJ. FilippatosG. Empagliflozin in heart failure with a preserved ejection fraction.N. Engl. J. Med.2021385161451146110.1056/NEJMoa2107038 34449189
    [Google Scholar]
  77. LaffelL.M. DanneT. KlingensmithG.J. Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): A multicentre, randomised, double-blind, parallel group, phase 3 trial.Lancet Diabetes Endocrinol.202311316918110.1016/S2213‑8587(22)00387‑4 36738751
    [Google Scholar]
  78. LeeM.M.Y. BrooksbankK.J.M. WetherallK. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF).Circulation2021143651652510.1161/CIRCULATIONAHA.120.052186 33186500
    [Google Scholar]
  79. MordiN.A. MordiI.R. SinghJ.S. McCrimmonR.J. StruthersA.D. LangC.C. Renal and cardiovascular effects of sglt2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure.Circulation2020142181713172410.1161/CIRCULATIONAHA.120.048739 32865004
    [Google Scholar]
  80. ShimizuW. KubotaY. HoshikaY. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial.Cardiovasc. Diabetol.202019114810.1186/s12933‑020‑01127‑z 32977831
    [Google Scholar]
  81. MasonT. Coelho-FilhoO.R. VermaS. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease.JACC Cardiovasc. Imaging20211461164117310.1016/j.jcmg.2020.10.017 33454272
    [Google Scholar]
  82. GaboritB. AncelP. AbdullahA.E. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: The EMPACEF study.Cardiovasc. Diabetol.20212015710.1186/s12933‑021‑01237‑2 33648515
    [Google Scholar]
  83. RauM. ThieleK. HartmannN.U.K. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: A randomized controlled study.Cardiovasc. Diabetol.2021201610.1186/s12933‑020‑01175‑5 33413355
    [Google Scholar]
  84. Brandt-JacobsenN.H. JürgensM. HasbakP. Reduction of cardiac adipose tissue volume with short‐term empagliflozin treatment in patients with type 2 diabetes: A substudy from the SIMPLE randomized clinical trial.Diabetes Obes. Metab.202325384485510.1111/dom.14933 36484428
    [Google Scholar]
  85. PuarP. HibinoM. MazerC.D. Left ventricular mass predicts cardiac reverse remodelling in patients treated with empagliflozin.Cardiovasc. Diabetol.202322115210.1186/s12933‑023‑01849‑w 37380983
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611319744250116092707
Loading
/content/journals/cvp/10.2174/0115701611319744250116092707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test