Current Topics in Medicinal Chemistry - Volume 3, Issue 1, 2003
Volume 3, Issue 1, 2003
-
-
Drug Discovery Today
Authors: O. Schwardt, H. Kolb and B. ErnstIn recent years, tools for the development of new drugs have been dramatically improved. These include genomic and proteomic research, numerous biophysical methods, combinatorial chemistry and screening technologies. In addition, early ADMET studies are employed in order to significantly reduce the failure rate in the development of drug candidates. As a consequence, the lead finding, lead optimization and development process has gained marked enhancement in speed and efficiency. In parallel to this development, major pharma companies are increasingly outsourcing many components of drug discovery research to biotech companies. All these measures are designed to address the need for a faster time to market.New screening methodologies have contributed significantly to the efficiency of the drug discovery process. The conventional screening of single compounds or compound libraries has been dramatically accelerated by high throughput screening methods. In addition, in silico screening methods allow the evaluation of virtual compounds. A wide range of new lead finding and lead optimization opportunities result from novel screening methods by NMR, which are the topic of this review article.
-
-
-
Design of Small Molecule Libraries for NMR Screening and Other Applications in Drug Discovery
Authors: E. Jacoby, J. Davies and M.J.J. BlommersThere are conceptual differences between high-throughput screening (HTS) and fragment-based screening by NMR. The number of compounds in libraries for NMR screening may be significantly smaller than those used for HTS. Because one relies on a small library its design is significantly important and is the object of this article. A short introduction on fragment-based NMR screening approaches will be provided. Although there are currently very few reports describing the design of libraries of small molecules for NMR screening, aspects of the question of how to compile diverse collections of small molecular fragments useful for drug design were previously addressed for the purposes of combinatorial library design and de novo drug design. As these disciplines are highly interrelated and are applied in an interconnected manner with NMR screening within the drug discovery process, a review of combinatorial library design and especially the building block or fragment selection strategies applied for combinatorial library design and de novo design is well suited to reveal fundamental strategies and potential techniques for the design of NMR screening libraries. This section will be rounded off by a report on handson- experience with the design of the Novartis second-site NMR screening library and practical considerations for the design of compound mixtures. Rather than providing an exact protocol general guidelines will be indicated.
-
-
-
1D NMR Methods in Ligand-Receptor Interactions
Authors: E.R. Zartler, J. Yan, H. Mo, A.D. Kline and M.J. ShapiroThe drug discovery process often involves the screening of compound libraries to identify drug candidates capable of binding to target macromolecules. New approaches in biological and chemical research are driving a change in the pharmaceutical industry. Recent advances in NMR spectroscopy such as affinity NMR techniques, which detect binding of a small molecule with a “receptor”, have been shown to be valuable tools to perform rapid screening of compounds for biological activity. These NMR observable events include using relaxation, chemical shift perturbations, translational diffusion, and magnetization transfer. These one dimensional NMR methods increase both the throughput of screening and yield crucial data on the mode of binding. The practical utility of these techniques will be described.
-
-
-
NMR Methods for the Determination of Protein- Ligand Dissociation Constants
By L. FieldingThis article is a review with 83 references of the application of NMR to the measurement of the dissociation constants of protein-ligand complexes. After briefly discussing some general concepts of molecular stability, the text turns to consider which NMR parameters are reporters of complex formation. The available data treatments required to translate observed NMR effects into quantitative measurements of the stability of the complex in the form of the dissociation constant (KD) are introduced. Linearisation methods and curve fitting methods are explained in detail and are illustrated with examples drawn from recent reports of protein-small molecule interactions. Throughout the text examples of the commonly observed NMR parameters Δδ, 1 / T1 and 1 / T2 are drawn from biological studies of 1H, 31P, 19F 15N (and other nuclei). The advantages of NMR diffusion experiments as a measure of KD are considered. Some less frequently used NMR approaches, some new ideas and some non-general methods are grouped together in a miscellaneous section. The major sources of errors in the determination of KD are identified. This allows recommendations for optimal experimental set up. Options for dealing with strong binding are reviewed. Finally, the implications of abstracting KD data from high throughput screening experiments are considered and several different approaches to generate this data are discussed.
-
-
-
Automation of Biomolecular NMR Screening
More LessFor NMR based screening we review equipment needed for automated preparation of samples and acquisition of a large number of data sets. Hardware connecting lab-bench and NMR spectrometer is described. We focus on software used for automated calculation of the similarity between spectra - a prerequisite for the identification of test compounds interacting with a target-molecule.
-
-
-
Second-Site NMR Screening and Linker Design
Authors: W. Jahnke, A. Florsheimer, M.J.J. Blommers, C. Paris, J. Heim, C.M. Nalin and L.B. PerezOne of the prime merits of NMR as a tool for lead finding in drug discovery research is its sensitivity and robustness to detect weak protein-ligand interactions. This sensitivity allows to build up ligands for a given target in a modular way, by a fragmentbased approach. In this approach, two ligands are seperately identified which bind to the target protein generally weakly, but at adjacent binding sites. In a next step, they are chemically linked to produce a high-affinity ligand. This review discusses methods to detect “second-site” ligands that bind to a protein in the presence of a “first-site” ligand, and methods to elucidate structural details on the spatial orientation of both ligands, so that chemical linkage is based on a large piece of experimental information. Published examples from second-site screening and linker design are summarized, and are complemented by previously unpublished in-house examples.
-
-
-
Application of NMR Screening in Drug Discovery
More LessThe application of NMR screening in drug discovery has recently attained heightened importance throughout the pharmaceutical industry. NMR screening can be applied at various points in a drug discovery program, ranging from very early in the program, when new targets can be screened long before an HTS enzymatic assay is developed, to later in the program, as in the case where no useful hits have been detected by HTS using biological assays. The binders determined in primary NMR screens are used to guide secondary screens, which can be either completely NMR driven or use NMR in combination with other biophysical techniques. In this review we briefly discuss the methods and techniques used in NMR screening. Then, we describe in detail the NMR screening strategies and their applications to specific targets, including successful examples from actual drug design programs at our own and other pharmaceutical companies.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
