- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 24, Issue 4, 2024
Current Topics in Medicinal Chemistry - Volume 24, Issue 4, 2024
Volume 24, Issue 4, 2024
-
-
Phytochemicals Showing Antiangiogenic Effect in Pre-clinical Models and their Potential as an Alternative to Existing Therapeutics
Angiogenesis, the formation of new blood vessels from a pre-existing vascular network, is an important hallmark of several pathological conditions, such as tumor growth and metastasis, proliferative retinopathies, including proliferative diabetic retinopathy and retinopathy of prematurity, age-related macular degeneration, rheumatoid arthritis, psoriasis, and endometriosis. Putting a halt to pathology-driven angiogenesis is considered an important therapeutic strategy to slow down or reduce the severity of pathological disorders. Considering the attrition rate of synthetic antiangiogenic compounds from the lab to reaching the market due to severe side effects, several compounds of natural origin are being explored for their antiangiogenic properties. Employing pre-clinical models for the evaluation of novel antiangiogenic compounds is a promising strategy for rapid screening of antiangiogenic compounds. These studies use a spectrum of angiogenic model systems that include HUVEC two-dimensional culture, nude mice, chick chorioallantoic membrane, transgenic zebrafish, and dorsal aorta from rats and chicks, depending upon available resources. The present article emphasizes the antiangiogenic activity of the phytochemicals shown to exhibit antiangiogenic behavior in these well-defined existing angiogenic models and highlights key molecular targets. Different models help to get a quick understanding of the efficacy and therapeutics mechanism of emerging lead molecules. The inherent variability in assays and corresponding different phytochemicals tested in each study prevent their immediate utilization in clinical studies. This review will discuss phytochemicals discovered using suitable preclinical antiangiogenic models, along with a special mention of leads that have entered clinical evaluation.
-
-
-
Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant
Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.
-
-
-
Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids
Authors: Shahnaz Parveen, Nidhi Maurya, Abha Meena and Suaib LuqmanBackground: Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. Aim and Objective: This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. Methodology: A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. Results: Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-ΚB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. Conclusion: Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
-
-
-
A Comprehensive Review on Phytochemistry and Pharmacology of Rosa Species (Rosaceae)
Authors: Faheem Fayaz, Kanwaljeet Singh, Sumeet Gairola, Zabeer Ahmed and Bhahwal Ali ShahThe Rosa L. genus is a significant plant family in the Rosaceae group, consisting of around 200 species, primarily shrubs. In India, it has 37 species, most located in the Western Himalayan region of Jammu and Kashmir and Himachal Pradesh. Roses are highly regarded for their beauty and growth and are popular worldwide for their nutritional, therapeutic, ornamental, and cosmetic value. The rose hips are utilized in creating various food and drink items, such as jams, jellies, teas, and alcoholic beverages. The Rosa species has various pharmacological activities, including anti-inflammatory, antidiabetic, hepatoprotective, antimicrobial, anti-proliferative/anticancer, anti-arthritic, neurological, and anti-obesity activity. This review aims to provide an in- -depth overview of the phytochemistry and pharmacology of the Rosa species in India, focusing on Rosa indica L., which has significant potential for future chemical and biological research.
-
-
-
Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy
Background: DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. Objective: In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. Methods: We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. Results: Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. Conclusion: The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
