- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 24, Issue 23, 2024
Current Topics in Medicinal Chemistry - Volume 24, Issue 23, 2024
Volume 24, Issue 23, 2024
-
-
Coptis chinensis Franch: Substance Basis, Mechanism of Action and Quality Control Standard Revealed Based on the Q-marker Concept and New Strategy of Systemic Pharmacology and Biosynthesis Research
Authors: Yating Zheng, Mengyu Zhang, Xiaoqing Wu, Rui Tan and Hezhong JiangCoptis chinensis Franch. (Ranunculaceae, Coptis), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of C. chinensis Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS).
Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of C. chinensis, the safety and efficacy of C. chinensis is provided.
Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar.
Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of C. chinensis, are also considered Q-markers.
The research strategy of “exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways” was used to accurately screen the quality markers of C. chinensis in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of C. chinensis and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of C. chinensis, which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.
-
-
-
A Pharmacological Update of Triazole Derivative: A Review
Authors: Venkatesan Parthasarathi and Hemalatha KanagarajRecently, a large number of novel heterocyclic compounds and their derivatives have been synthesized, and studies on their biological functions have been conducted. Even though the triazole moiety of this scaffold appears to be fairly small, many researchers are interested in it because of its biological profile and variety of potential uses. Triazole derivatives have been synthesized and published by various researchers as their important characteristic against various diseases. Several researchers are interested in this scaffold because of its biological profile and wide variety of potential uses, even if its triazole moiety seems to be somewhat less. The derivative of this heterocyclic ring produced various biological activities such as anti-inflammatory, anticonvulsant, hypoglycemic, antitubercular, anxiolytic, antimicrobial, antitumor, and anticancer. The current review article focuses on pharmacological profile associated with triazoles and mainly focuses on structural modification done for various targets, along with a brief description of targets.
-
-
-
PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders.
This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives.
To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance.
Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
-
-
-
Enhancement of Anticancer Potential of Artemisinin Derivatives through N-glycosylation
By Kiran SharmaCancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
