Current Topics in Medicinal Chemistry - Volume 22, Issue 27, 2022
Volume 22, Issue 27, 2022
-
-
Advances in Metal-organic Frameworks (MOFs) based Biosensors for Diagnosis: An Update
Authors: Ghazala Ashraf, Tauqir Ahmad, Muhammad Z. Ahmed, Murtaza and Yousef RasmiMetal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.
-
-
-
Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis
In the last decade, due to the global increase in diseases, drugs for biomedical applications have increased dramatically. Therefore, there is an urgent need for analytical tools to monitor, treat, investigate, and control drug compounds in diverse matrices. The new and challenging task has been looking for simple, low-cost, rapid, and portable analytical platforms. The development of microfluidic paper-based analytical devices (μPADs) has garnered immense attention in many analytical applications due to the benefit of cellulose structure. It can be functionalized and serves as an ideal channel and scaffold for the transportation and immobilization of various substances. Microfluidic technology has been considered an effective tool in pharmaceutical analysis that facilitates the quantitative measurement of several parameters on cells or other biological systems. The μPADs represent unique advantages over conventional microfluidics, such as the self-pumping capability. They have low material costs, are easy to fabricate, and do not require external power sources. This review gives an overview of the current designs in this decade for μPADs and their respective application in pharmaceutical analysis. These include device designs, choice of paper material, and fabrication techniques with their advantages and drawbacks. In addition, the strategies for improving analytical performance in terms of simplicity, high sensitivity, and selectivity are highlighted, followed by the application of μPADs design for the detection of drug compounds for various purposes. Moreover, we present recent advances involving μPAD technologies in the field of pharmaceutical applications. Finally, we discussed the challenges and potential of μPADs for the transition from laboratory to commercialization.
-
-
-
Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin
Authors: Eka Noviana, Soni Siswanto and Agustina A. M. Budi HastutiDiabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
-
-
-
Microfluidic Paper-based Device for Medicinal Diagnosis
Background: The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as “Microfluidic paper-based analytical devices (μPADs)”. This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements. Objective: This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated μPADs applications for motif identification. Methods: The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with μPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of μPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications. Conclusion: The μPADs potential to deal with commercialization in terms of the state-of-the-art of μPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
