- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 21, Issue 13, 2021
Current Topics in Medicinal Chemistry - Volume 21, Issue 13, 2021
Volume 21, Issue 13, 2021
-
-
Perspectives on Fragment-based Drug Discovery: A Strategy Applicable to Diverse Targets
Authors: Qingxin Li and Congbao KangFragment-Based Drug Discovery (FBDD) is a strategy to develop potent lead molecules and is frequently used in drug discovery projects of the pharmaceutical industry. This method starts from identifying a small-molecule fragment, which usually binds weakly to the target and follows with a hit-to-lead step in which the fragment is grown into potent molecules that bind tightly to the target to affect its function. Quite a few drugs and compounds in clinical trials are developed using this approach, making FBDD a powerful strategy in drug discovery. FBDD can be applied to multiple targets and the hit rate in screening can be used in target druggability assessment. In this minireview, we provide a summary of the development of FBDD. In addition to giving a brief summary of the methods used in fragment screening, we highlight some methods that are critical in fragment growth. Biophysical methods and careful chemical modification of the fragments are the key elements in FBDD. We show several strategies that can be utilized in FBDD. We emphasize that NMR spectroscopy such as 19F-NMR and 1H-15N-HSQC experiment and X-ray crystallography are important in FBDD due to their roles in fragment screening and understanding the binding modes of the fragment hits, which provides a strategy for fragment growth.
-
-
-
Molecular Mechanism of Inhibition of Polysialyltransferase Domain (PSTD) by Heparin
Authors: Si-Ming Liao, Xue-Hui Liu, Li-Xing Peng, Bo Lu, Ri-Bo Huang and Guo-Ping ZhouThe polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.
-
-
-
The Influence of Thyroid Hormone on Ca2+ Signaling Pathways During Embryonal Development
More LessThyroid hormones influence brain development through the regulation of gene expression. Ca2+-dependent gene expression is a major pathway controlled by the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), which in turn is induced by the thyroid hormone T3, as also demonstrated in a mouse embryonic stem cell line. In addition, T3 controls the expression of neurexin, synaptotagmin2 (SYT2), synaptotagmin-related gene1 (SRG1), and a number of other genes involved in neurotransmitter release in a Ca2+-dependent manner. It has been noticed that the development of dopaminergic neurons by evoking significant calcium entry occurs through TRPC calcium channels. It was also demonstrated that the T3-mediated development of an early neuronal network is characteristic for depolarizing GABAergic neurons concomitant with intracellular calcium transients. An important aspect of T3-dependent regulation of gene expression in the developing brain is its modulation by the transcription activator COUP-TF1. Regulation of alternative splicing by CaMKIV is another important aspect for embryonal neural development since it can lead to the expression of PMCA1a, the neuronal-specific isoform of the plasma membrane calcium pump. Maternal hypothyroidism or CaMKIV deficiency can have a severe influence on fetal brain development.
-
-
-
Structure and Functions of Bacterial Outer Membrane Protein A, A Potential Therapeutic Target for Bacterial Infection
Authors: Qingfeng Guan, Biswajit Bhowmick, Archana Upadhyay and Qian HanOuter membrane protein A (OmpA) is a unique outer membrane protein which is abundantly present in the outer membrane of Gram-negative bacteria. OmpA is a transmembrane structural protein with a conserved amino acid sequence among different bacteria. This protein is involved in a number of functions like adhesion, toxicity, invasiveness, and biofilm formation in Gram-negative bacteria. Many studies have proposed that OmpA could be a therapeutic target for bacterial infection. Our review focusses on the studies involving recent development in the structure and functions of OmpA and further discussing its potential as a therapeutic target for bacterial infection.
-
-
-
Advances in Anoctamin 1: A Potential New Drug Target in Medicinal Chemistry
Authors: Junjie Zhong, Wendi Xuan, Mengting Tang, Shihao Cui, Yuhang Zhou, Xiaosheng Qu, Xin Cao and Bing NiuANO1, anoctamin 1(also known as TMEM16A), is the molecular basis of calcium-activated chloride channels with ten transmembrane segments which are widely expressed in mammalian cells, including epithelial cells, vascular smooth muscle tissues, electro-excitatory cells, and some tumor cells. To date, multiple studies have shown that many natural and synthetic compounds have regulatory effects on ANO1. Therefore, ANO1 could be a potential new drug target for the treatment of cancer, pain, diarrhea, hypertension, and asthma. In this study, we review the structure of ANO1 and its involvement in cancer, pain, diarrhea, hypertension, and asthma.
-
-
-
4D-QSAR Models Applied to the Study of TGF- β1 Receptor Inhibitors
More LessBackground: The quantitative structure-activity relationship is an analysis method that can be applied for designing new molecules. In 1997, Hopfinger and coworkers developed the 4DQSAR methodology aiming to eliminate the question of which conformation to use in a QSAR study. In this work, the 4D-QSAR methodology was used to quantitatively determine the influence of structural descriptors on the activity of aryl pyrimidine derivatives as inhibitors of the TGF-β1 receptor. The members of the TGF-β subfamily are interesting molecular targets, since they play an important function in the growth and development of cell cellular including proliferation, apoptosis, differentiation, Epithelial-Mesenchymal Transition (EMT), and migration. In late stages, TGF-β exerts tumor-promoting effects, increasing tumor invasiveness, and metastasis. Therefore, TGF-β is an attractive target for cancer therapy. Objective: The major goal of the current research is to develop 4D-QSAR models aiming to propose new structures of aryl pyrimidine derivatives. Materials and Methods: Molecular dynamics simulation was carried out to generate the conformational ensemble profile of a data set with aryl pyrimidine derivatives. The conformations were overlaid into a three-dimensional cubic box, according to the three-ordered atom alignment. The occupation of the grid cells by the interaction of pharmacophore elements provides the Grid Cell Occupancy Descriptors (GCOD), the dependent variables used to build the 4D-QSAR models. The best models were validated (internal and external validation) using several statistical parameters. Docking molecular studies were performed to better understand the binding mode of pyrimidine derivatives inside the TGF-β active site. Results: The 4D-QSAR model presented seven descriptors and acceptable statistical parameters (R2 = 0.89, q2 = 0.68, R2pred = 0.65, r2m = 0.55, R2P = 0.68 and R2rand = 0.21) besides pharmacophores groups important for the activity of these compounds. The molecular docking studies helped to understand the pharmacophoric groups and proposed substituents that increase the potency of aryl pyrimidine derivatives. Conclusion: The best QSAR model showed adequate statistical parameters that ensure their fitness, robustness, and predictivity. Structural modifications were assessed, and five new structures were proposed as candidates for a drug for cancer treatment.
-
-
-
2’,6’-dihydroxy-4’-methoxy Dihydrochalcone Improves the Cognitive Impairment of Alzheimer’s Disease: A Structure-activity Relationship Study
Background: Chalcones and dihydrochalcones present potent inhibition of acetylcholinesterase, currently considered the most efficient approach for symptomatic treatment of Alzheimer’s disease. Objective: The present study aimed to explore the potential benefits of 2',6'-dihydroxy-4'-methoxy dihydrochalcone on the cognitive deficits of animals submitted to the streptozotocin-induced Alzheimer's model, as well as evaluating the possible mechanisms of action. Methods: Learning and memory functions of different groups of animals were submitted to the streptozotocin-induced Alzheimer's model (STZ 2.5 mg/mL, i.c.v.) and subsequently treated with 2',6'-dihydroxy-4'-methoxy dihydrochalcone (DHMDC) administered at doses of 5, 15, and 30 mg/kg (p.o.), respectively. Rivastigmine (0,6 mg/kg, i.p.) and vehicle were evaluated in aversive memory test (inhibitory avoidance test) and spatial memory test (object recognition test). Molecular docking simulations were performed to predict the binding mode of DHMDC at the peripheral site of AChE, to analyze noncovalent enzyme-ligand interactions. DFT calculations were carried out to study well-known acetylcholinesterase inhibitors and DHMDC. Results: DHMDC markedly increased the learning and memory of mice. STZ caused a significant decline of spatial and aversive memories in mice, attenuated by DHMDC (15 and 30 mg/kg). Furthermore, STZ conspicuously increased lipid peroxidation and compromised the antioxidant levels in mice brains. DHMDC pretreatment significantly increased GSH activity and other oxidative stress markers and decreased TBARS level in the brain of STZ administered mice. AChE activity was significantly decreased by DHMDC in the brain of mice. Conclusion: The results together point out that DHMDC may be a useful drug in the management of dementia.
-
-
-
Design of Novel Phosphopantetheine Adenylyltransferase Inhibitors: A Potential New Approach to Tackle Mycobacterium tuberculosis
Background: Tuberculosis (TB) has been a challenging disease worldwide, especially for the neglected poor populations. Presently, there are approximately 2 billion people infected with TB worldwide and 10 million people in the world fell ill with active TB, leading to 1.5 million deaths. Introduction: The classic treatment is extensive and the drug- and multi-drug resistance of Mycobacterium tuberculosis has been a threat to the efficacy of the drugs currently used. Therefore, the rational design of new anti-TB candidates is urgently needed. Methods: With the aim of contributing to face this challenge, 78 compounds have been proposed based on SBDD (Structure-Based Drug Design) strategies applied to target the M. tuberculosis phosphopantetheine adenylyltransferase (MtPPAT) enzyme. Ligand-Based Drug Design (LBDD) strategies were also used for establishing Structure-Activity Relationships (SAR) and for optimizing the structures. MtPPAT is important for the biosynthesis of coenzyme A (CoA) and it has been studied recently toward the discovery of new inhibitors. Results: After docking simulations and enthalpy calculations, the interaction of selected compounds with MtPPAT was found to be energetically favorable. The most promising compounds were then synthesized and submitted to anti-M. tuberculosis and MtPPAT inhibition assays. Conclusion: One of the compounds synthesized (MCP163), showed the highest activity in both of these assays.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
