- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 20, Issue 8, 2020
Current Topics in Medicinal Chemistry - Volume 20, Issue 8, 2020
Volume 20, Issue 8, 2020
-
-
Natural Products as a Paradigm for the Treatment of Coxsackievirus - induced Myocarditis
Authors: Madhu Khanna, Anju Gautam, Roopali Rajput and Latika SharmaCoxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying viral pathology, structure and molecular biology, as well as diagnosis of this disease, there is still no virus-specific drug in clinical use. Structural and nonstructural proteins produced during the coxsackievirus life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, WIN (for Winthrop) compounds and application of nucleic-acid based strategies were shown to target viral capsid, entry and viral proteases, but have not reached to the clinical trials as a successful antiviral agent. There is an urgent need for diverse molecular libraries for phenotype-selective and high-throughput screening.
-
-
-
Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application
Authors: Mukesh C. Joshi and Timothy J. EganThe side-chains of quinoline antimalarial agents are the major concern of focus to build novel and efficaciaous bioactive and clinical antimalarials. Bioative antimalarial analogs may play a critical role in pH trapping in the food vacuole of RBC’s with the help of fragmented amino acid, thus lead to β-hematin inhibition. Here, the authors tried to summarize a useful, comprehensive compilation of side-chain modified ACQs along with their synthesis, biophysical and therapeutic applications etc. of potent antiplasmodial agents and therefore, opening the door towards the potential clinical status.
-
-
-
UPLC-DAD Assisted Phytochemical Quantitation Reveals a Sex, Ploidy and Ecogeography Specificity in the Expression Levels of Selected Secondary Metabolites in Medicinal Tinospora cordifolia: Implications for Elites’ Identification Program
Authors: Rakesh Kr. Thakur, Vijay R. Rajpal, S.N. Raina, Pawan Kumar, Anand Sonkar and Lata JoshiBackground: Medicinal phytochemistry involving UPLC-DAD in an exhaustive analysis involving quantification of eight commercially important phytochemicals viz. syringin, cordifolioside A, magnoflorine, tinocordiside, palmatine, 20β-hydroxyecdysone, L-tetrahydropalmatine and berberine has been done in 143 accessions from eight states and the union territories of Delhi and Jammu & Kashmir of India representing three different ploidy levels viz. diploid (2x), triploid (3x) and synthetic tetraploid (4x). The study was done to assess the effect of sex, ploidy level and ecogeography on the expression level of secondary metabolites in stems of dioecious, medicinally important shrub Tinospora cordifolia. Methods: Two different UPLC-DAD methods were used for the quantification of eight selected phytochemicals from the alcoholic stem extracts of T. cordifolia accessions. The Waters Acquity UPLC system hyphenated to the QTOF micromass system, equipped with PDA and ESI-Q-TOF detectors was utilized for the quantitative analysis, Mass Lynx v 4.0 software was used for data analysis. Results: Significant quantitative changes were observed in the analysed secondary metabolites among different accessions of T. cordifolia. The triploid (3x) cytotypes revealed higher amounts of seven out of eight analysed secondary metabolites than diploids and only 20β-hydroxyecdysone was observed to be present in significantly higher amount in diploid cytotypes. Further, at the tetraploid level, novel induced colchiploid (synthetic 4x) genotypes revealed increase in the yield of all of the analysed eight phytochemicals than their respective diploid counterparts. The quantity of active principles in tetraploid cytotypes were also higher than the average triploid levels at multiple locations in five out of eight tested phytochemicals, indicating the influence of ploidy on expression levels of secondary metabolites in T. cordifolia. Additionally, at each of the three ploidy levels (2x, 3x and synthetic 4x), a significant sex specificity could be observed in the expression levels of active principles, with female sex outperforming the male in the content of some phytochemicals, while others getting overexpressed in the male sex. The manifestation of diverse ecogeographies on secondary metabolism was observed in the form of identification of high yielding accessions from the states of Madhya Pradesh, Delhi and Himachal Pradesh and the Union territory of Jammu & Kashmir. Two triploid female accessions that contained approximately two- to eight fold higher amounts of five out of the eight analysed phytochemicals have been identified as superior elites from the wild from the states of Delhi and Madhya Pradesh. Conclusion: The paper shows the first observations of ploidy specificity along with subtle sex and ecogeography influence on the expression levels of secondary metabolome in T. cordifolia.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
