- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 20, Issue 3, 2020
Current Topics in Medicinal Chemistry - Volume 20, Issue 3, 2020
Volume 20, Issue 3, 2020
-
-
Antioxidant and Antibacterial Activity of Sulfonamides Derived from Carvacrol: A Structure-Activity Relationship Study
Background: Bacterial resistance to antibiotics is a growing problem in all countries and has been discussed worldwide. In this sense, the development of new drugs with antibiotic properties is highly desirable in the context of medicinal chemistry. Methodology: In this paper we investigate the antioxidant and antibacterial potential of sulfonamides derived from carvacrol, a small molecule with drug-like properties. Most sulfonamides had antioxidant and antibacterial potential, especially compound S-6, derived from beta-naphthylamine. Results: To understand the possible mechanisms of action involved in biological activity, the experimental results were compared with molecular docking data. Conclusion: This research allows appropriate discussion on the identified structure activity relationships.
-
-
-
Molecular Docking and Quantum Studies of Lawsone Dimers Derivatives: New Investigation of Antioxidant Behavior and Antifungal Activity
Background: In general, fungal species are characterized by their opportunistic character and can trigger various infections in immunocompromised hosts. The emergence of infections associated with high mortality rates is due to the resistance mechanisms that these species develop. Methods: This phenomenon of resistance denotes the need for the development of new and effective therapeutic approaches. In this paper, we report the investigation of the antioxidant and antifungal behavior of dimeric naphthoquinones derived from lawsone whose antimicrobial and antioxidant potential has been reported in the literature. Results: Seven fungal strains were tested, and the antioxidant potential was tested using the combination of the methodologies: reducing power, total antioxidant capacity and cyclic voltammetry. Molecular docking studies (PDB ID 5V5Z and 1EA1) were conducted which allowed the derivation of structureactivity relationships (SAR). Compound 1-i, derived from 3-methylfuran-2-carbaldehyde showed the highest antifungal potential with an emphasis on the inhibition of Candida albicans species (MIC = 0.5 μg/mL) and the highest antioxidant potential. Conclusion: A combination of molecular modeling data and in vitro assays can help to find new solutions to this major public health problem.
-
-
-
Synthesis, In Vitro and In Silico Studies of Indolequinone Derivatives against Clinically Relevant Bacterial Pathogens
Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 μg.mL-1) and Gram-negative bacteria (MIC = 8 μg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.
-
-
-
Integrated Protocol to Design Potential Inhibitors of Dipeptidyl Peptidase- 4 (DPP-4)
Background: A strategy for the treatment of type II diabetes mellitus is the inhibition of the enzyme known as dipeptidyl peptidase-4 (DPP-4). Aims: This study aims to investigate the main interactions between DPP-4 and a set of inhibitors, as well as proposing potential candidates to inhibit this enzyme. Methods: We performed molecular docking studies followed by the construction and validation of CoMFA and CoMSIA models. The information provided from these models was used to aid in the search for new candidates to inhibit DPP-4 and the design of new bioactive ligands from structural modifications in the most active molecule of the studied series. Results: We were able to propose a set of analogues with biological activity predicted by the CoMFA and CoMSIA models, suggesting that our protocol can be used to guide the design of new DPP-4 inhibitors as drug candidates to treat diabetes. Conclusion: Once the integration of the techniques mentioned in this article was effective, our strategy can be applied to design possible new DPP-4 inhibitors as candidates to treat diabetes.
-
-
-
Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
-
-
-
4-Oxoquinoline Derivatives as Antivirals: A Ten Years Overview
4-Oxoquinoline derivatives constitute an important family of biologically important substances, associated with different bioactivities, which can be synthesized by different synthetic methods, allowing the design and preparation of libraries of substances with specific structural variations capable of modulating their pharmacological action. Over the last years, these substances have been extensively explored by the scientific community in efforts to develop new biologically active agents, with greater efficiency for the treatment of a variety of diseases. Viral infections have been one of the targets of these studies, although to a lesser extent than other diseases such as cancer and bacterial infections. Nevertheless, the literature provides examples that corroborate with the fact that these substances may act on different pharmacological targets in different viral pathogens. This review provides a compilation of some of the major studies published in recent years showing the discovery and/or development of new antiviral oxoquinoline agents, highlighting, whenever possible, their mechanisms of action.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
