- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 20, Issue 16, 2020
Current Topics in Medicinal Chemistry - Volume 20, Issue 16, 2020
Volume 20, Issue 16, 2020
-
-
Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery
Authors: Ariane Sternberg, Dwight L. McKee and Cord NaujokatLike other human pathogenic viruses, coronavirus SARS-CoV-2 employs sophisticated macromolecular machines for viral host cell entry, genome replication and protein processing. Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro). Under the pressure of the accelerating COVID-19 pandemic caused by the outbreak of SARS-CoV-2 in Wuhan, China in December 2019, novel and repurposed drugs were recently designed and identified for targeting the SARS-CoV-2 reproduction machinery, with the aim to limit the spread of SARS-CoV-2 and morbidity and mortality due to the COVID-19 pandemic.
-
-
-
Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents
Authors: Xiaoyue Wen, Yongqin Zhou, Junhao Zeng and Xinyue Liu1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity relationships as well as mechanisms of action are also discussed.
-
-
-
Moxifloxacin-isatin Hybrids Tethered by 1,2,3-triazole and their Anticancer Activities
Authors: Mingli Yang, Hailin Liu, Yazhou Zhang, Xiujun Wang and Zhi XuAims: To explore more active fluoroquinolone anticancer candidates. Background: Cancer which can affect almost any part of the body, is most striking and deadliest disease. It is estimated that around one in five people globally develop cancer during their lifetime, and approximately 10% people eventually die from this disease, and 18.1 million new cancer cases with 9.6 million deaths occurred in 2018. The anticancer agents play an intriguingly role in fighting against cancer, and above 100 drugs have already been marketed for this purpose. However, the major drawback of current accessible anticancer agents is the low specificity which results in many side effects. Moreover, cancer cells have already generated resistance to almost all available drugs, creating an urgent need to novel anticancer agents with high specificity and great efficiency especially towards drug-resistant cancers. Quinolone and isatin derivatives were reported to possess promising anticancer activity, high specificity, and relatively few side effects. Currently, several quinolone and isatin derivatives such as Voreloxin, Quarfloxin, AT-3639, Semaxanib, Sunitinib and Nintedanib have already been introduced in clinical practice or under evaluations for the treatment of cancer including drug-resistant cancers, revealing their potential as novel anticancer agents. Hybrid molecules have the potential to increase the specificity, improve the efficiency, and overcome the drug resistance, so hybridization is a promising strategy in the drug discovery. Some of the moxifloxacin-isatin hybrids exhibited considerable activity against various cancer cells even drug-resistant cells, so it is conceivable that hybridization of quinolone and isatin moieties may provide novel anticancer candidates. The structure-activity relationships (SARs) demonstrated that the linkers between quinolone and isatin skeletons were critical for the biological activity, and 1,2,3-triazole could exert various noncovalent interactions with biological targets, so introduction of 1,2,3-triazole as the linker between the two moieties may provide more efficient anticancer candidates. Objective: To explore more active fluoroquinolone anticancer candidates and enrich the structureactivity relationships of fluoroquinolone-isatin hybrids. Methods: The synthesized moxifloxacin-isatin hybrids 5a-c, 6a-g and 13a-d were assessed for their anticancer activities against liver cancer cells HepG2, breast cancer cells MCF-7, MCF-7/DOX, prostate cancer cells DU-145 and MDR DU-145 by MTT assay. Hybrid 5b was selected for further evaluation of its tubulin polymerization inhibitory activity with combretastatin A-4 as comparison. Result: Most of the synthesized hybrids were active against the tested cancer cell lines, and the most active hybrid 5b (IC50: 31.3-76.8 μM) was more potent than vorinostat (IC50: 96.7->100 μM), demonstrating moxifloxacin-isatin hybrids are potential anticancer candidates. Conclusion: The mechanism study revealed that inhibition of tubulin polymerization is at least one of the mechanisms of action for this kind of hybrids. Other: The structure-activity relationship was summarized for further rational design of more efficient anticancer candidates.
-
-
-
Recent Advances in β-lactam Derivatives as Potential Anticancer Agents
Authors: Xinfen Zhang and Yanshu JiaCancer, accounts for around 10 million deaths annually, is the second leading cause of death globally. The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents are the main challenges in the control and eradication of cancers, so it is imperative to develop novel anticancer agents. Immense efforts have been made in developing new lead compounds and novel chemotherapeutic strategies for the treatment of various forms of cancers in recent years. β-Lactam derivatives constitute versatile and attractive scaffolds for the drug discovery since these kinds of compounds possess a variety of pharmacological properties, and some of them exhibited promising potency against both drug-sensitive and drug-resistant cancer cell lines. Thus, β-lactam moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of β-lactam derivatives with the potential therapeutic application for the treatment of cancers covering articles published between 2000 and 2020. The mechanisms of action, the critical aspects of design and structureactivity relationships are also discussed.
-
-
-
1,3,5-Triazine-azole Hybrids and their Anticancer Activity
Authors: Hua Guo and Quan-Ping Diao1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity, and the structure-activity relationships as well as the mechanisms of action are also discussed to provide comprehensive and target-oriented information for the development of this kind of anticancer drugs.
-
-
-
The In Vitro Anticancer Activity and Potential Mechanism of Action of 1-[(1R,2S)-2-fluorocyclopropyl]Ciprofloxacin-(4-methyl/phenyl/benzyl-3-aryl)-1,2,4-triazole-5(4H)-thione Hybrids
Authors: Ya-Zhou Zhang, Hai-Lin Liu, Qian-Song He and Zhi XuAim: Development of 1-[(1R, 2S)-2-fluorocyclopropyl]ciprofloxacin-1,2,4-triazole-5(4H)- thione hybrids as potential dual-acting mechanism anticancer agent to overcome the drug resistance. Background: Chemotherapy is an essential tool for the treatment of lung and female breast cancers, and numerous anticancer agents have been launched for this purpose. However, the clinical outcomes of chemotherapy are usually far from satisfactory due to the side effects and resistance to chemotherapeutic drugs. Thus, it is urgent to develop novel anti-lung and anti-breast cancer agents. Objective: The primary objective of this study was to evaluate the potential of bis-isatin scaffolds with alkyl/ether linkers between the two isatin moieties against different human breast cancer cell lines including A549, MCF-7 and their drug-resistant counterparts A549/CDDP, MCF-7/ADM cells. Methods: The 1-[(1R, 2S)-2-fluorocyclopropyl]ciprofloxacin-(4-methyl/phenyl/benzyl-3-aryl)-1,2,4- triazole-5(4H)-thione hybrids were screened for their in vitro activity against drug-sensitive lung (A549), breast (MCF-7) and their drug-resistant counterparts A549/CDDP (cisplatin-resistant), MCF- 7/ADM (doxorubicin-resistant) cancer cell lines by MTT assay. The inhibitory activity of these hybrids against topoisomerase II and EGFR was also evaluated to investigate the potential mechanism of action of these hybrids. Results: The most prominent hybrid 7k (IC50: 37.28-49.05 μM) was comparable to Vorinostat against A549 and A549/CDDP lung cancer cells, and was 2.79-2.94 times more active than Vorinostat against MCF-7 and MCF-7/ADM breast cancer cell lines. Moreover, hybrid 7k (IC50: 8.6 and 16.4 μM) also demonstrated dual inhibition against topoisomerase II and EGFR. Conclusion: The 1-[(1R, 2S)-2-fluorocyclopropyl]ciprofloxacin-1,2,4-triazole-5(4H)-thione hybrids possess equally activity against both drug-sensitive cancer cells and their drug-resistant counterparts, and the majority of them were no inferior to the reference Vorinostat. The mechanistic study revealed that these hybrids could inhibit both topoisomerase II and EGFR, so these hybrids can be developed as dual-acting mechanism anticancer agents.
-
-
-
The Anti-Breast Cancer Potential of Bis-Isatin Scaffolds
Authors: Hua Guo and Quan-Ping DiaoAim: To develop novel anti-breast cancer agents and discuss the structure-activity relationship of bis-isatin scaffolds. Background: Breast cancer is the most common invasive cancer and the second leading cause of cancer death in women after lung cancer. Bis-isatin scaffolds possess potential anti-breast cancer activity, and some of them such as Indirubin could induce cancer cells apoptosis via multiply mechanisms. Objective: The primary objective of this study was to evaluate the potential of bis-isatin scaffolds with alkyl/ether linkers between the two isatin moieties against different human breast cancer cell lines including MCF-7, AU565, MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells. Methods: The synthesized bis-isatin scaffolds with alkyl/ether linker between the two isatin moieties were evaluated for their in vitro activity against MCF-7, AU565, MDA-MB-231, MDA-MB-435, and MDA-MB-468 human breast cancer cell lines by MTT assay. Results: All the synthesized compounds (IC50: 38.3-197.6 μM) possess considerable activity against MCF-7, AU565, MDA-MB-231, MDA-MB-435, and MDA-MB-468 human breast cancer cell lines, and the most potent compound 4e (IC50: 38.3-63.5 μM) was no inferior to Cisplatin (IC50: 20.1-38.6 μM) against the five tested human breast cancer cell lines. Conclusion: All the synthesized bis-isatin scaffolds were active against a panel of breast cancer cell lines, highlighting the significance of exploring the bis-isatin scaffolds to fight against breast cancers. The enriched structure-activity relationship may set up the direction for the rational design and development of novel bis-isatin scaffolds with higher efficiency.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
