- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 20, Issue 11, 2020
Current Topics in Medicinal Chemistry - Volume 20, Issue 11, 2020
Volume 20, Issue 11, 2020
-
-
An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses
Background: Emerging viral zoonotic diseases are one of the major obstacles to secure the “One Health” concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. Methods: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. Results: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. Conclusion: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
-
-
-
Bioengineered Polymer/Composites as Advanced Biological Detection of Sorbitol: An Application in Healthcare Sector
Authors: Ruma Rani, Geeta Singh, Kanisht Batra and Prasad MinakshiBioengineered polymers and nanomaterials have emerged as promising and advanced materials for the fabrication and development of novel biosensors. Nanotechnology-enabled biosensor methods have high sensitivity, selectivity and more rapid detection of an analyte. Biosensor based methods are more rapid and simple with higher sensitivity and selectivity and can be developed for point-of-care diagnostic testing. Development of a simple, sensitive and rapid method for sorbitol detection is of considerable significance to efficient monitoring of diabetes-associated disorders like cataract, neuropathy, and nephropathy at initial stages. This issue encourages us to write a review that highlights recent advancements in the field of sorbitol detection as no such reports have been published till the date. The first section of this review will be dedicated to the conventional approaches or methods that had been playing a role in detection. The second part focused on the emerging field i.e. biosensors with optical, electrochemical, piezoelectric, etc. approaches for sorbitol detection and the importance of its detection in healthcare application. It is expected that this review will be very helpful for readers to know the different conventional and recent detection techniques for sorbitol at a glance.
-
-
-
Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease
Authors: Prasad Minakshi, Rajesh Kumar, Mayukh Ghosh, Basanti Brar, Manju Barnela and Preeti LakhaniInflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn’s disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.
-
-
-
Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution
Authors: Pawan Kaur, Rita Choudhary, Anamika Pal, Chanchal Mony and Alok AdholeyaMetal nanoparticles are well known for their antimicrobial properties. The use of metalbased nanoparticles in the agricultural field has considerably increased globally by both direct and indirect means for the management of plant diseases. In this context, the development of controlled delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating metal nanoparticles in a polymer matrix include the ability to function as a protector of metal nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant growth regulators used to enhance the crop productivity.
-
-
-
Organic Polymer and Metal Nano-particle Based Composites for Improvement of the Analytical Performance of Electrochemical Biosensors
Authors: Prasad Minakshi, Hari Mohan, Manjeet, Ravina, Basanti Brar, Mohammad Shafiq and C.S. PundirMetal nanoparticles (NPs) are described in the nanoscale and made from either pure metals or their compounds such as oxides. Metallic NPs have certain indistinct functional groups due to which these can bind with any type of ligand, antibody and drugs. Organic polymers, which conduct electricity, are called conducting polymers (intrinsically conducting polymers). They behave like semiconductors by exhibiting metallic conductivity. Process-ability is the major advantage of conducting polymers. Nanocomposite is a novel material having nano-fillers scattered in a matrix with morphology and interfacial characteristics of nano-composites including their individual property that influence their characteristics. Conducting polymers and NP composites can enhance the rate of electron transport between the current collector material (electrode) and the electrolyte; therefore they have been employed in the construction of improved electrochemical sensors such as amperometric, catalytic and potentiodynamic affinity sensors.
-
-
-
Antibacterial Assessment of Zinc Sulfide Nanoparticles against Streptococcus pyogenes and Acinetobacter baumannii
Background: Due to the appearance of resistant bacterial strains against the antimicrobial drugs and the reduced efficiency of these valuable resources, the health of a community and the economies of countries have been threatened. Objective: In this study, the antibacterial assessment of zinc sulfide nanoparticles (ZnS NPs) against Streptococcus pyogenes and Acinetobacter baumannii has been performed. Methods: ZnS NPs were synthesized through a co-precipitation method using polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and polyethylene glycol (PEG-4000). The size and morphology of the synthesized ZnS NPs were determined by a scanning electron microscope (SEM) and it was found that the average size of the applied NPs was about 70 nm. In order to evaluate the antibacterial effect of the synthesized ZnS NPs, various concentrations (50μg/mL, 100 μg/mL and 150 μg/mL) of ZnS NPs were prepared. Antibacterial assessments were performed through the disc diffusion method in Mueller Hinton Agar (MHA) culture medium and also the optical density (OD) method was performed by a UV-Vis spectrophotometer in Trypticase™ Soy Broth (TSB) medium. Then, in order to compare the antibacterial effects of the applied NPs, several commercial antibiotics including penicillin, amikacin, ceftazidime and primaxin were used. Results: The achieved results indicated that the antibacterial effects of ZnS NPs had a direct relation along with the concentrations and the concentration of 150 μg/mL showed the highest antibacterial effect in comparison with others. In addition, the ZnS NPs were more effective on Acinetobacter baumannii. Conclusion: The findings of this research suggest a novel approach against antibiotic resistance.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
