- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 19, Issue 4, 2019
Current Topics in Medicinal Chemistry - Volume 19, Issue 4, 2019
Volume 19, Issue 4, 2019
-
-
PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II
Authors: Phaedra Eleftheriou, Athina Geronikaki and Anthi PetrouBackground: Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Šfrom the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. Objective: The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. Methods: The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. Conclusion: The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Šmay form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Šor 19 Šmay enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Šmay favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
-
-
-
Target Enzyme in Alzheimer’s Disease: Acetylcholinesterase Inhibitors
Authors: Mridula Saxena and Ragini DubeyAlzheimer’s Disease (AD), affecting a large population worldwide is characterized by the loss of memory and learning ability in the old population. The enzyme Acetylcholinesterase Enzyme (AChE) is the key enzyme in the hydrolysis of the neurotransmitter acetylcholine and is also the target of most of the clinically used drugs for the treatment of AD but these drugs provide only symptomatic treatment and have the limitation of loss of therapeutic efficacy with time. The development of different strategies targeting the AChE enzyme along with other targets like Butyl Cholinesterase (BChE), amyloid-β (Aβ), β-secretase-1 (BACE), metals antioxidant properties and free radical scavenging capacity has been focused in recent years. Literature search was conducted for the molecules and their rational design which have shown inhibition for AChE and the other abovementioned targets. Several hybrid molecules incorporating the main sub-structures derived from diverse chemotypes like acridine, quinoline, carbamates, and other heterocyclic analogs have shown desired pharmacological activity with a good profile in a single molecule. It is followed by optimization of the activity through structural modifications guided by structure-activity relationship studies. It has led to the discovery of novel molecules 17b, 20, and 23 with desired AChE inhibition along with desirable activity against other abovementioned targets for further pre-clinical studies.
-
-
-
Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design
Authors: Eleni A. Rekka, Panos N. Kourounakis and Maria PantelidouBackground: The biotransformation of xenobiotics is a homeostatic defensive response of the body against bioactive invaders. Xenobiotic metabolizing enzymes, important for the metabolism, elimination and detoxification of exogenous agents, are found in most tissues and organs and are distinguished into phase I and phase II enzymes, as well as phase III transporters. The cytochrome P450 superfamily of enzymes plays a major role in the biotransformation of most xenobiotics as well as in the metabolism of important endogenous substrates such as steroids and fatty acids. The activity and the potential toxicity of numerous drugs are strongly influenced by their biotransformation, mainly accomplished by the cytochrome P450 enzymes, one of the most versatile enzyme systems. Objective: In this review, considering the importance of drug metabolising enzymes in health and disease, some of our previous research results are presented, which, combined with newer findings, may assist in the elucidation of xenobiotic metabolism and in the development of more efficient drugs. Conclusion: Study of drug metabolism is of major importance for the development of drugs and provides insight into the control of human health. This review is an effort towards this direction and may find useful applications in related medical interventions or help in the development of more efficient drugs.
-
-
-
New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking
Background: Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. Objective: The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. Methods: In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. Results: Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). Conclusion: Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.
-
-
-
Novel Pyrazolo[4, 3-c]Quinolin-3-One Derivatives as PDE5A Inhibitors
Authors: Althaf Shaik, Harshit K. Agarwal, Rashmi Bhakuni and Sivapriya KirubakaranBackground: PDE5A is a phosphodiesterase which specifically hydrolyzes the cGMP to GMP. It takes part in several physiological and pathological pathways and is considered an important drug target. Currently, PDE5 inhibitors (ex; Sildenafil, Tadalafil) available in the market are not only being used for the treatment of erectile dysfunction but at the same time, they are also in clinical trials being investigated as anticancer agents. Materials & Methods: In this work, we have examined pyrazolo [4,3-c]quinolin-3-ones as PDE5A inhibitors. Pyrazolo [4,3-c]quinolin-3-ones are the class of tricyclic heterocyclic derivatives having a variety of therapeutically interesting drug candidates known for their anti-inflammatory, anti-viral, anti-anxiety and anti-cancer activity. Therefore, synthetic methods providing access to pyrazolo [4, 3-c] quinolin-3-ones are immensely valuable. Here, we are reporting a simple but efficient route for the synthesis of novel 8–morpholino-2-aryl – 2, 5-dihydro-3H-pyrazolo [4, 3-c] quinolin-3-one derivatives. Results: Further, molecular docking studies of synthesized compounds with human PDE5A protein showed that all the compounds exhibited good docking score in comparison with known inhibitors. In addition, all the synthesized molecules were evaluated against HCT116 cell lines for their antitumor activity. Conclusion: Among all the synthesized compounds, compound 5a, 5d, and 6e showed better cytotoxicity. Thus, these derivatives can be studied as potential inhibitors of PDE5A.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
