- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 19, Issue 10, 2019
Current Topics in Medicinal Chemistry - Volume 19, Issue 10, 2019
Volume 19, Issue 10, 2019
-
-
Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors
Authors: Khusbu Singh, Gaurav R. Dwivedi, A. Swaroop Sanket and Sanghamitra PatiFrom the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.
-
-
-
Medicinal Chemistry of Alternative Therapeutics: Novelty and Hopes with Genus Ammannia
More LessThe plants have formed the basis of folklore remedy since the beginning of human civilization. The cumulative human endeavor and experience over a period of thousands of years developed into well to organize traditional medicine systems viz. Ayurvedic, Unani, Chinese amongst others. Across the world, traditional medicine is either the mainstay of health care or serves as a complement to modern drugs. In view of worldwide use of traditional medicines, World Health Organization launched ‘WHO-Traditional Medicine Strategy 2014-2023’ for the development of strong policies regarding knowledge-base, safety, quality-control and effectiveness of traditional/alternative therapeutics for national health systems. Besides their use in traditional medicine, plants have always been a good source of modern drug/pharmacologically active molecules. More than half of the modern pharmaceuticals are either plant isolates or their derivatives. The plant-based drugs are not only effective, but have better compatibility with human biological systems because of more biologically relevant chemistry, hence lesser side effects. Some of the species of genus Ammannia (Lythraceae) have been reported for their magical medicinal values. Many herbal formulations containing Ammannia spp. have been patented for treatment of serious diseases/disorders like cancer, spinal disease, human female infertility, chronic tonsillitis, pelvic inflammatory disease, treatment of bladder stones, urinary tract infections, dermatitis etc. The uses of Ammannia spp. in traditional medicine have been further verified by the biological activities of their extracts as well as isolation of bioactive phytomolecules. The current review provides details about Ammannia spp.; its use in folklore remedy, herbal formulations, biological activities of extracts, isolation of bioactive phytomolecules and SAR study of semi-synthetic derivatives to analyze the possibility of new drug molecules of plant origin.
-
-
-
ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics
Authors: Niraj K. Jha, Rohan Kar and Rituraj NiranjanNeurodegeneration is a distinguishing feature of many age related disorders and other vector borne neuroinflammatory diseases. There are a number of factors that can modulate the pathology of these disorders. ATP-binding cassette (ABC) transporters are primarily involved in the maintenance of normal brain homeostasis by eliminating toxic peptides and compounds from the brain. Also, ABC transporters protect the brain from the unwanted effects of endogenous and exogenous toxins that can enter the brain parenchyma. Therefore, these transporters have the ability to determine the pathological outcomes of several neurological disorders. For instance, ABC transporters like P-glycoprotein (ABCB1), and BCRP (ABCG2) have been reported to facilitate the clearance of peptides such as amyloid-β (Aβ) that accumulate in the brain during Alzheimer’s disease (AD) progression. Other members such as ABCA1, ABCA2, ABCC8, ABCC9, ABCG1 and ABCG4 also have been reported to be involved in the progression of various brain disorders such as HIV-associated dementia, Multiple sclerosis (MS), Ischemic stroke, Japanese encephalitis (JE) and Epilepsy. However, these defective transporters can be targeted by numerous botanical compounds such as Verapamil, Berberine and Fascalpsyn as a therapeutic target to treat these neurological outcomes. These compounds are already reported to modulate ABC transporter activity in the CNS. Nonetheless, the exact mechanisms involving the ABC transporters role in normal brain functioning, their role in neuronal dysfunction and how these botanical compounds ensure and facilitate their therapeutic action in association with defective transporters still remain elusive. This review therefore, summarizes the role of ABC transporters in neurological disorders, with a special emphasis on its role in AD brains. The prospect of using botanical/natural compounds as modulators of ABC transporters in neurological disorders is discussed in the latter half of the article.
-
-
-
Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals
Authors: P. M. Arockianathan, Monika Mishra and Rituraj NiranjanThe developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
-
-
-
Recent Developments in Natural Product Inspired Synthetic 1,2,4-Trioxolanes (Ozonides): An Unusual Entry into Antimalarial Chemotherapy
Authors: Mohit K. Tiwari, Dharmendra K. Yadav and Sandeep ChaudharyAccording to WHO “World health statistics 2018”, malaria alongside acute respiratory infections and diarrhoea, is one of the major infectious disease causing children’s death in between the age of 1-5 years. Similarly, according to another report (2016) malaria accounts for approximately 3.14% of the total disease burden worldwide. Although malaria has been widely eradicated in many parts of the world, the global number of cases continues to rise due to the rapid spread of malaria parasites that are resistant to antimalarial drugs. Artemisinin (8), a major breakthrough in the antimalarial chemotherapy was isolated from the plant Artemisia annua in 1972. Its semi-synthetic derivatives such as artemether (9), arteether (10), and artesunic acid (11) are quite effective against multi-drug resistant malaria strains and are currently the drug of choice for the treatment of malaria. Inspite of exhibiting excellent antimalarial activity by artemisinin (8) and its derivatives, parallel programmes for the discovery of novel natural and synthetic peroxides were also the area of investigation of medicinal chemists all over the world. In these continuous efforts of extensive research, natural ozonide (1,2,4- trioxolane) was isolated from Adiantum monochlamys (Pteridaceae) and Oleandra wallichii (Davalliaceae) in 1976. These naturally occurring stable ozonides inspired chemists to investigate this novel class for antimalarial chemotherapy. The first identification of unusually stable synthetic antimalarial 1,2,4-trioxolanes was reported in 1992. Thus, an unusual entry of ozonides in the field of antimalarial chemotherapy had occurred in the early nineties. This review highlights the recent advancements and historical developments observed during the past 42 years (1976-2018) focusing mainly on important ventures of the antimalarial 1,2,4-trioxolanes (ozonides).
-
-
-
Comparative Drug Resistance Reversal Potential of Natural Glycosides: Potential of Synergy Niaziridin & Niazirin
Background: Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon of drug resistance. Objective: To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant Escherichia coli. Methods: The MICs were determined following the CLSI guidelines for broth micro-dilution. In-vitro combination studies were performed by broth checkerboard method followed by Time-Kill studies, the efflux pump inhibition assay, ATPase inhibitory activity, mutation prevention concentration and in-silico studies. Results: The results showed that both glycosides did not possess antibacterial activity of their own, but in combination, they reduced the MIC of tetracycline up to 16 folds. Both were found to inhibit efflux pumps, but niaziridin was the best. In real time expression pattern analysis, niaziridin was also found responsible for the down expression of the two important efflux pump acrB & yojI genes alone as well as in combination. Niaziridin was also able to over express the porin forming genes (ompA & ompX). These glycosides decreased the mutation prevention concentration of tetracycline. Conclusion: This is the first ever report on glycosides, niazirin and niaziridin acting as drug resistance reversal agent through efflux pump inhibition and modulation of expression pattern drug resistant genes. This study may be helpful in preparing an effective antibacterial combination against the drug-resistant GNB from a widely growing Moringa oleifera.
-
-
-
Molecular Targets for Malarial Chemotherapy: A Review
Authors: Dharmendra K. Yadav, Surendra Kumar, Mahesh K. Teli, Ravikant Yadav and Sandeep ChaudharyThe malaria parasite resistance to the existing drugs is a serious problem to the currently used antimalarials and, thus, highlights the urgent need to develop new and effective anti-malarial molecules. This could be achieved either by the identification of the new drugs for the validated targets or by further refining/improving the existing antimalarials; or by combining previously effective agents with new/existing drugs to have a synergistic effect that counters parasite resistance; or by identifying novel targets for the malarial chemotherapy. In this review article, a comprehensive collection of some of the novel molecular targets has been enlisted for the antimalarial drugs. The targets which could be deliberated for developing new anti-malarial drugs could be: membrane biosynthesis, mitochondrial system, apicoplasts, parasite transporters, shikimate pathway, hematin crystals, parasite proteases, glycolysis, isoprenoid synthesis, cell cycle control/cycline dependent kinase, redox system, nucleic acid metabolism, methionine cycle and the polyamines, folate metabolism, the helicases, erythrocyte G-protein, and farnesyl transferases. Modern genomic tools approaches such as structural biology and combinatorial chemistry, novel targets could be identified followed by drug development for drug resistant strains providing wide ranges of novel targets in the development of new therapy. The new approaches and targets mentioned in the manuscript provide a basis for the development of new unique strategies for antimalarial therapy with limited off-target effects in the near future.
-
-
-
Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases
Authors: Brinda Chandar and Debdutta BhattacharyaA rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
