- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 18, Issue 7, 2018
Current Topics in Medicinal Chemistry - Volume 18, Issue 7, 2018
Volume 18, Issue 7, 2018
-
-
Backbone-cyclized Peptides: A Critical Review
Authors: Samuel J.S. Rubin and Nir QvitBackbone-cyclized peptides and peptidomimetics integrate the biological activity and pharmacological features necessary for successful research tools and therapeutics. In general, these structures demonstrate improved maintenance of bioactive conformation, stability and cell permeability compared to their linear counterparts, while maintaining support for a variety of side chain chemistries. We explain how backbone cyclization and cycloscan techniques allow scientists to cyclize linear peptides with retained or enhanced biological activity and improved drug-like features. We discuss head-to-tail (Cterminus to N-terminus), building unit-to-tail, building unit-to-side chain, building unit-to-building unit, and building unit-to-head backbone cyclization, with examples of building blocks, such as Nα-(ω- thioalkylene), Nα-(ω-aminoalkylene) and Nα-(ω-carboxyalkylene) units. We also present several methods for recombinant expression of backbone-cyclized peptides, including backbone cyclic peptide synthesis using recombinant elements (bcPURE), phage display and induced peptidyl-tRNA drop-off. Moreover, natural backbone-cyclized peptides are also produced by cyanobacteria, plants and other organisms; several of these compounds have been developed and commercialized for therapeutic applications, which we review. Backbone-cyclized peptides and peptidomimetics comprise a growing share of the pharmaceutical industry and will be applied to additional problems in the near future.
-
-
-
Conversion of Protein Active Regions into Peptidomimetic Therapeutic Leads Using Backbone Cyclization and Cycloscan – How to Do it Yourself!
Authors: Samuel J.S. Rubin, Yftah Tal-Gan, Chaim Gilon and Nir QvitProtein-protein Interactions (PPIs) are particularly important for controlling both physiologic and pathologic biological processes but are difficult to target due to their large and/or shallow interaction surfaces unsuitable for small molecules. Linear peptides found in nature interact with some PPIs, and protein active regions can be used to design synthetic peptide compounds for inhibition of PPIs. However, linear peptides are limited therapeutically by poor metabolic and conformational stability, which can compromise their bioactivity and half-life. Cyclic peptidomimetics (modified peptides) can be used to overcome these challenges because they are more resistant to metabolic degradation and can be engineered to adopt desired conformations. Backbone cyclization is a strategy that we developed to improve drug-like properties of linear peptide leads without jeopardizing the integrity of functionally relevant side-chains. Here, we provide the first description of an entire approach for developing backbone cyclized peptide compounds, based upon two straightforward ‘ABC’ and ‘DEF’ processes. We present practical examples throughout our discussion of revealing active regions important for PPIs and identifying critical pharmacophores, as well as developing backbone cyclized peptide libraries and screening them using cycloscan. Finally, we review the impact of these advances and provide a summary of current ongoing work in the field.
-
-
-
Designing Peptidomimetics
More LessThe concept of a peptidomimetic was coined about forty years ago. Since then, enormous effort and interest have been devoted to mimic the properties of peptides with small molecules or pseudopeptides. The present report aims to review different approaches described in the past to succeed in this goal. Basically, there are two different approaches to design peptidomimetics: a medicinal chemistry approach, where parts of the peptide are successively replaced by non-peptide moieties until getting a non-peptide molecule and a biophysical approach, where a hypothesis of the bioactive form of the peptide is sketched and peptidomimetics are designed based on hanging the appropriate chemical moieties on diverse scaffolds. Although both approaches have been used in the past, the former has been more widely used to design peptidomimetics of secretory peptides, whereas the latter is nowadays getting momentum with the recent interest in designing protein-protein interaction inhibitors. The present report summarizes the relevance of the information gathered from structure-activity studies, together with a short review of the strategies used to design new peptide analogs and surrogates. In the following section, there is a short discussion on the characterization of the bioactive conformation of a peptide, to continue describing the process of designing conformationally constrained analogs producing first and second generation peptidomimetics. Finally, there is a section devoted to reviewing the use of organic scaffolds to design peptidomimetics based on the information available on the bioactive conformation of the peptide.
-
-
-
Copper-catalyzed Azide-alkyne Cycloaddition (CuAAC)-Mediated Macrocyclization of Peptides: Impact on Conformation and Biological Activity
Authors: Chiara Testa, Anna M. Papini, Michael Chorev and Paolo RoveroThe long-lasting impetus to design novel modes of macrocyclization, and their implementation into a wide range of bioactive peptides, originates from their contributions to the restriction of conformational space and the stabilization of preferential bioactive conformations that support higher efficacy and binding affinity to cognate macromolecular targets, improved specificity and lowering susceptibility to enzymatic degradation processes. Introducing CuI-catalyzed azide-alkyne cycloaddition (CuAAC), a prototypical click reaction, to the field of peptide sciences as a bio-orthogonal reaction that generates a disubstituted-[1,2,3]triazol-1-yl moiety as a pseudopeptidic bond that is peptidomimetic in nature, paved the way to its widespread application as a new and promising mode of macrocyclization. This review presents the state-of-art of CuAAC-mediated macrocyclization as it applies to an expansive range of bioactive peptides and explores the relationship among the structural diversity of CuAACmediated cyclizations, biological activities and conformations.
-
-
-
The Hydrocarbon Staple & Beyond: Recent Advances Towards Stapled Peptide Therapeutics that Target Protein-protein Interactions
Authors: Robert A. Hillman, Jonathan W. Nadraws and Michael A. BertucciAnomalous protein-protein interactions (PPIs) have been correlated to a variety of disease states, such as cancer, infectious disease, neurological disorders, diabetes, endocrine disorders and cardiovascular disease. Stapled peptides are an emerging intervention for these PPIs due to their improved structural rigidity and pharmacokinetic properties relative to unstapled peptides. This review details the most recent advances in the field of stapled peptide therapeutics, including the increasing variety of PPIs being targeted and types of peptide staples being employed.
-
-
-
Cyclic Peptides that Govern Signal Transduction Pathways: From Prokaryotes to Multi-cellular Organisms
Authors: Ryan W. Mull, Anthony Harrington, Lucia A. Sanchez and Yftah Tal-GanCyclic peptide scaffolds are key components of signal transduction pathways in both prokaryotic and eukaryotic organisms since they act as chemical messengers that activate or inhibit specific cognate receptors. In prokaryotic organisms these peptides are utilized in non-essential pathways, such as quorum sensing, that are responsible for virulence and pathogenicity. In the more evolved eukaryotic systems, cyclic peptide hormones play a key role in the regulation of the overall function of multicellular organisms, mainly through the endocrine system. This review will highlight several prokaryote and eukaryote systems that use cyclic peptides as their primary signals and the potential associated with utilizing these scaffolds for the discovery of novel therapeutics for a wide range of diseases and illnesses.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
