- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 18, Issue 6, 2018
Current Topics in Medicinal Chemistry - Volume 18, Issue 6, 2018
Volume 18, Issue 6, 2018
-
-
Recent Development of Small Molecule Glutaminase Inhibitors
Authors: Minsoo Song, Soong-Hyun Kim, Chun Y. Im and Hee-Jong HwangGlutaminase (GLS), which is responsible for the conversion of glutamine to glutamate, plays a vital role in up-regulating cell metabolism for tumor cell growth and is considered to be a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed in both academia and industry. Most importantly, Calithera Biosciences Inc. is actively developing the glutaminase inhibitor CB-839 for the treatment of various cancers, and it is currently being evaluated in phase 1 and 2 clinical trials. In this review, recent efforts to develop small molecule glutaminase inhibitors that target glutamine metabolism in both preclinical and clinical studies are discussed. In particular, more emphasis is placed on CB-839 because it is the only small molecule GLS inhibitor being studied in a clinical setting. The inhibition mechanism is also discussed based on X-ray structure studies of thiadiazole derivatives present in glutaminase inhibitor BPTES. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are described in the hopes of providing useful information for the next generation of GLS inhibitors.
-
-
-
Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer
Authors: Swatishree Sradhanjali and Mamatha M. ReddyCancer cells alter their metabolism to support the uninterrupted supply of biosynthetic molecules required for continuous proliferation. Glucose metabolism is frequently reprogrammed in several tumors in addition to fatty acid, amino acid and glutamine metabolism. Pyruvate Dehydrogenase Kinase (PDK) is a gatekeeper enzyme involved in altered glucose metabolism in tumors. There are four isoforms of PDK (1 to 4) in humans. PDK phosphorylates E1α subunit of pyruvate dehydrogenase complex (PDC) and inactivates it. PDC decarboxylates pyruvate to acetyl CoA, which is further metabolized in mitochondria. Overexpression of PDK was observed in several tumors and is frequently associated with chemotherapy related drug resistance, invasion and metastasis. Elevated expression of PDK leads to a shift in glucose metabolism towards glycolysis instead of oxidative phosphorylation. This review summarizes recent literature related to the role of PDKs in cancer and their inhibition as a strategy. In particular, we discuss the role of PDK in tumor progression, metabolic reprogramming in stem cells, and their regulation by miRNAs and lncRNAs, oncogenes and tumor suppressors. Further, we review strategies aimed at targeting PDK to halt tumor growth and progression.
-
-
-
Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy
Authors: Yunli Shi, Shengnan Liu, Shabir Ahmad and Qingzhi GaoIncreased glycolysis has been one of the metabolic characteristics known as the Warburg effect. The functional and therapeutic importance of the Warburg effect in targeted therapy is scientifically recognized and the glucose metabolic pathway has become a desirable target of anticancer strategies. Glucose transporters (GLUTs) play an important role in cancer glycolysis to sustain cancer cell proliferation, metastasis and survival. Utilizing the knowledge of differential expression and biological functions of GLUTs offers us the possibility of designing and delivering chemotherapeutics toward targeted tumor tissues for improved cancer selectivity. Inhibition of glucose uptake or glycolysis may effectively kill hypoxic cancer cells. Facilitative drug uptake via active transportation provides the potential opportunity to circumvent the drug resistance in chemotherapy. GLUTs as the hallmarks and biotargets of cancer metabolism enable the design and development of novel targeted theranostic agents. In this updated review, we examine the current scenario of the GLUTs as strategic targets in cancer and the unique concepts for discovery and development of GLUTs-targeted anticancer agents. We highlight the recent progresses on structural biology and underlying mechanism studies of GLUTs, with a brief introduction to the computational approaches in GLUT-mediated drug transport and tumor targeting.
-
-
-
Targeting Sugar Uptake and Metabolism for Cancer Identification and Therapy: An Overview
Authors: Marina Tanasova, Vagarshak V. Begoyan and Lukasz J. WeselinskiMetabolic deregulations have emerged as a cancer characteristic, opening a broad avenue for strategies and tools to target cancer through sugar uptake and metabolism. High expression levels of sugar transporters in cancer cells offered glycoconjugation as an approach to achieve enhanced cellular accumulation of drugs and imaging agents, with the sugar moiety anchoring the bioactive cargo to cancer cells. On the other hand, high demand for sugar nutrients in cancers provided a new avenue to target cancer cells with metabolic or sugar uptake inhibitors to induce cancer cells starvation or death. This overview summarizes recent advances in targeting cancer cells through sugar transport for cancer detection and therapy.
-
-
-
SCAP/SREBPs are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy
Authors: Xiang Cheng, Jianying Li and Deliang GuoLipid metabolism reprogramming emerges as a new hallmark of malignancies. Sterol regulatory element-binding proteins (SREBPs), which are central players in lipid metabolism, are endoplasmic reticulum (ER)-bound transcription factors that control the expression of genes important for lipid synthesis and uptake. Their transcriptional activation requires binding to SREBP cleavageactivating protein (SCAP) to translocate their inactive precursors from the ER to the Golgi to undergo cleavage and subsequent nucleus translocation of their NH2-terminal forms. Recent studies have revealed that SREBPs are markedly upregulated in human cancers, providing the mechanistic link between lipid metabolism alterations and malignancies. Pharmacological or genetic inhibition of SCAP or SREBPs significantly suppresses tumor growth in various cancer models, demonstrating that SCAP/SREBPs could serve as promising metabolic targets for cancer therapy. In this review, we will summarize recent progress in our understanding of the underlying molecular mechanisms regulating SCAP/SREBPs and lipid metabolism in malignancies, discuss new findings about SREBP trafficking, which requires SCAP N-glycosylation, and introduce a newly identified microRNA-29-mediated negative feedback regulation of the SCAP/SREBP pathway. Moreover, we will review recently developed inhibitors targeting the SCAP/SREBP pathway for cancer treatment.
-
-
-
Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer
Authors: Nicholas S. Akins, Tanner C. Nielson and Hoang V. LeCancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the “Warburg effect”, has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
-
-
-
Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer
More LessIsocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (αKG). IDH1 and IDH2 regulate several cellular processes, including oxidative respiration, glutamine metabolism, lipogenesis, and cellular defense against oxidative damage. Mutations in IDH1 and IDH2 have recently been observed in multiple tumors, including gliomas, acute myeloid leukemia, myelodysplastic syndromes, and chondrosarcoma. IDH1 and IDH2 mutations involve a gain in neomorphic activity that catalyzes αKG conversion to (R)-2- hydroxyglutarate ((R)-2HG). IDH mutation-mediated accumulation of (R)-2HG results in epigenetic dysregulation, altered gene expression, and a block in cellular differentiation. Targeting mutant IDH by development of small molecule inhibitors is a rapidly emerging therapeutic approach as evidenced by the recent approval of the first selective mutant IDH2 inhibitor AG-221 (enasidenib) for the treatment of IDH2-mutated AML. This review will focus on mutant isocitrate dehydrogenase as a therapeutic drug target and provides an update on selective and pan-mutant IDH1/2 inhibitors in clinical trials and other mutant IDH inhibitors that are under development.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
