- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 18, Issue 23, 2018
Current Topics in Medicinal Chemistry - Volume 18, Issue 23, 2018
Volume 18, Issue 23, 2018
-
-
Small Molecules Effective Against Liver and Blood Stage Malarial Infection
Authors: Snigdha Singh, Neha Sharma, Charu Upadhyay, Sumit Kumar, Brijesh Rathi and PoonamMalaria is a lethal disease causing devastating global impact by killing more than 8,00,000 individuals yearly. A noticeable decline in malaria related deaths can be attributed to the most reliable treatment, ACTs against P. falciparum. However, the cumulative resistance of the malaria parasite against ACTs is a global threat to control the disease and, therefore the new effective therapeutics are urgently needed, including new treatment approaches. Majority of the antimalarial drugs target BS malarial infection. Currently, scientists are eager to explore the drugs with potency against not only BS but other life stages such as sexual and asexual stages of the malaria parasite. Liver Stage is considered as one of the important drug targets as it always leads to BS and the infection can be cured at this stage before it enters into the Blood Stage. However, a limited number of compounds are reported effective against LS malaria infection probably due to scarcity of in vitro LS culture methods and clinical possibilities. This mini review covers a range of chemical compounds showing efficacy against BS and LS of the malaria parasite’s life cycle collectively (i.e. dual stage activity). These scaffolds targeting dual stages are essential for the eradication of malaria and to evade resistance.
-
-
-
Antimalarials: Review of Plasmepsins as Drug Targets and HIV Protease Inhibitors Interactions
Malaria is a major global health concern with the majority of cases reported in regions of South-East Asia, Eastern Mediterranean, Western Pacific, the Americas, and Sub-Saharan Africa. The World Health Organization (WHO) estimated 216 million worldwide reported cases of malaria in 2016. It is an infection of the red blood cells by parasites of the genus Plasmodium with most severe and common forms caused by Plasmodium falciparum (P. falciparum or Pf) and Plasmodium vivax (P. vivax or Pv). Emerging parasite resistance to available antimalarial drugs poses great challenges to treatment. Currently, the first line of defense includes artemisinin combination therapies (ACTs), increasingly becoming less effective and challenging to combat new occurrences of drug-resistant parasites. This necessitates the urgent need for novel antimalarials that target new molecular pathways with a different mechanism of action from the traditional antimalarials. Several new inhibitors and potential drug targets of the parasites have been reported over the years. This review focuses on the malarial aspartic proteases known as plasmepsins (Plms) as novel drug targets and antimalarials targeting Plms. It further discusses inhibitors of hemoglobin-degrading plasmepsins Plm I, Plm II, Plm IV and Histo-aspartic proteases (HAP), as well as HIV protease inhibitors of plasmepsins.
-
-
-
Ionophores as Potent Anti-malarials: A Miracle in the Making
Authors: Hina Bharti, Aakriti Singal, Mohsin Raza, P.C. Ghosh and Alo NagPlasmodium has a complex life cycle that spans between mosquito and human. For survival and pathogenesis it banks upon dynamic alterations in ionic transport across organelle and plasma membrane. Being a fundamental contributor of crucial biological processes in parasite, ionic balance facilitates parasite invasion, augmentation and transmission. Past few decades have witnessed tremendous advancement in understanding the relevance of ionic transit in parasites. Perhaps, not surprisingly, disruption of ionic homeostasis was thought to be detrimental for parasite. Compounds like ionophores are known to facilitate ionic transport across membrane down their electrochemical gradient. Despite continuous effort, malaria treatment is still a challenge particularly due to the development of resistance among parasites against existing therapeutic options. However, repurposing the existing drugs can be advantageous over de novo drug development programs in terms of cost and associated risk factors. Ionophores, being used in coccidiosis have proven to be of significance in the treatment of experimental models of malaria. Several recent reports have highlighted the attractive potential of ionophores such as Monensin, Maduramicin, Valinomycin, etc., that can act against multiple stages of malarial parasite’s life cycle. Improved variety of these molecules may help in mitigating the drug resistance problems as well. This review is an attempt to examine the relevant literature and provide insight into the mechanism and prospects of different classes of ionophores as promising anti-malarial potpourri.
-
-
-
Biology of Heme: Drug Interactions and Adverse Drug Reactions with CYP450
Heme is central to functions of many biologically important enzymes (hemoproteins). It is an assembly of four porphyrin rings joined through methylene bridges with a central Fe (II). Heme is present in all cells, and its synthesis and degradation balance its amount in the cell. The deregulations of heme networks and incorporation in hemoproteins lead to pathogenic state. This article addresses the detailed structure, biosynthesis, degradation, and transportation associated afflictions to heme. The article is followed by its roles in various diseased conditions where it is produced mainly as the cause of increased hemolysis. It manifests the symptoms in diseases as it is a pro-oxidant, pro-inflammatory and pro-hemolytic agent. We have also discussed the genetic defects that tampered with the biosynthesis, degradation, and transportation of heme. In addition, a brief about the largest hemoprotein group of enzymes- Cytochrome P450 (CYP450) has been discussed with its roles in drug metabolism.
-
-
-
Designing of a Novel Indoline Scaffold Based Antibacterial Compound and Pharmacological Evaluation Using Chemoinformatics Approach
Authors: Aarushi Singh, Neeraj Kumar, Damini Sood, Snigdha Singh, Amardeep Awasthi, Vartika Tomar and Ramesh ChandraAntibiotic resistance is not only a global public health threat but also a huge economic burden to our society that urgently needs to be addressed by improved antibiotics and continuing development of novel molecules to treat resistant bacterial infections. Nowadays combination therapies offer a competent approach to counteract antibiotic resistance in bacteria. Better knowledge of mechanisms of antibiotic resistance has lead to the finding of new alternatives to antibiotic therapy. Hence, in this article, we report a novel series of indoline derivatives and their computational study as potent antimicrobials. The present study investigates the indoline based derived library interaction with DNA gyrase B enzyme to be used as a potential antimicrobial drug. Computational approaches were employed to carry out the molecular interactions and pharmacological studies. In this study, we have compared indoline with its derivatives and have found that compound 13 (1m) resulted in the strong binding with the highest score (-9.02 kcal/mol) in the designed library where indoline showed (-6.43 kcal/mol). Furthermore, molecular dynamics simulation run also confirmed the strongest interaction of a compound and target protein with less RMSD and RMSF deviation of the complex. Notably, the compound was also found to possess the good pharmacological properties and pharmacokinetic properties.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
