- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 18, Issue 2, 2018
Current Topics in Medicinal Chemistry - Volume 18, Issue 2, 2018
Volume 18, Issue 2, 2018
-
-
Bis-coumarin Derivatives and Their Biological Activities
Authors: Qing-Cheng Ren, Chuan Gao, Zhi Xu, Lian-Shun Feng, Ming-Liang Liu, Xiang Wu and Feng ZhaoBis-coumarins have caused great interests in the recent years. These compounds exhibit diverse biological activities which are ascribed to their ability to exert noncovalent interactions with the various active sites in organisms. Some of them such as dicoumarolum and dicoumarol were approved for therapeutic purposes in clinical practice. Encouraged by the above facts, numerous biscoumarin derivatives have been synthesized and screened for their biological activities, and many of them showed promising potency. This review is focused on the biological potential of bis-coumarin derivatives with particular mention of those exhibiting antibacterial, anticoagulant, antiinflammatory, antiviral, anti-parasite and antitumor activities, and their structure-activity relationships are also discussed.
-
-
-
Recent Development of Coumarin Derivatives as Potential Antiplasmodial and Antimalarial Agents
Authors: Xin-Liang Hu, Chuan Gao, Zhi Xu, Ming-Liang Liu, Lian-Shun Feng and Guang-De ZhangMalaria still remains one of the leading deadliest diseases throughout the world, leading to around 1 million deaths annually. The emergence and spread of growing resistance to the firstline antimalarials are an alarming the serious problem in malaria control, demanding the need for new drugs more potent than earlier with improved Absorption, Distribution, Metabolism, and Excretion (ADME) profiles. Coumarins, which exhibited various biological properties, also displayed potential in vitro antiplasmodial and in vivo antimalarial activities. Moreover, many of coumarin derivatives have already been used in clinical practice for the treatment of several diseases. Therefore, coumarin derivatives play a pivotal role in medicinal chemistry, also making them promising candidates for the treatment of malaria. This review aims to summarize the recent advances made towards the development of coumarin-containing derivatives as antiplasmodial and antimalarial agents and their structure-activity relationship is also discussed.
-
-
-
Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years
More LessCoumarins are natural products characterized as 1,2 benzopyrones widely distributed in plants, as well as, in many species of fungi and bacteria. Nowadays, many synthetic procedures allow the discovery of coumarins with expanded chemical space. The ability to exert noncovalent interactions with many enzymes and receptors in live organisms lead the coumarins to exhibit a wide range of biological activities and applications. Then, this manuscript provides an overview of the use of coumarins compounds in medicinal chemistry in treating many diseases. Important examples of the last years have been selected concerning the activities of coumarins as anticoagulant, anticancer, antioxidant, antiviral, anti-diabetics, anti-inflammatory, antibacterial, antifungal and anti-neurodegerative agents. Additionally, it also includes applications of coumarins as fluorescent sensors for biological systems. Thus, this work aims to contribute to the development of new rational research projects for the treatment and diagnosis of pathologies using coumarin derivatives.
-
-
-
Synthesis and Biological Evaluation of Coumarins Derivatives as Potential Inhibitors of the Production of Pseudomonas aeruginosa Virulence Factor Pyocyanin
Antimicrobial Resistance (AMR) is a serious problem for the humans since it threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi. One way around this problem is to act on the virulence factors, produced by bacteria, which increase their infection effectiveness. In view of these facts, new coumarin derivatives were synthesized and evaluated for their anti-virulence biological activity towards Pseudomonas aeruginosa. The results suggest that coumarin derivatives with a secondary carbon at C-3 position reduces P. aeruginosa growth whereas compounds with one additional substituent have a significant effect over pyocyanin production (10k EC50 7 ± 2 μM; 10l EC50 42 ± 13 μM). Moreover, 10k reduces P. aeruginosa motility and biofilm formation, what is compatible with a quorum sensing related mechanism of action.
-
-
-
A UBI 31-38 Peptide-coumarin Conjugate: Photophysical Features, Imaging Tracking and Synergism with Amphotericin B Against Cryptococcus
Cryptococcosis is a fungal disease of global significance for which new effective treatments are needed. The conjugation of the synthetic antimicrobial peptide fragment UBI 31-38 to a coumarin derivative showed to be an effective approach for the design of a novel anticryptococcal agent. In addition to antifungal activity, the conjugate exhibited intense fluorescence, which could be valuable for mechanistic investigations of this molecule. In this work, we studied the photophysical properties of the conjugate and confocal scanning laser microscopy was used to inspect the distribution of the peptide-coumarin conjugate in Cryptococcus cell. The synergism of this compound with amphotericin B or fluconazole against C. gattii and C. neoformans strains was also investigated. The results indicated that the fluorescent conjugate alone as well as its combination with amphotericin B are promising tools against cryptococcosis.
-
-
-
Synthesis and Antifungal Activity of Coumarins Derivatives Against Sporothrix spp.
Sporotrichosis is a serious public health problem in Brazil that affects human patients and domestic animals, mainly cats. Thus, the search for new antifungal agents is required also due to the emergence and to the lack of effective drugs available in the therapeutic arsenal. The aim of this study was to evaluate the in vitro antifungal profile of two synthetic series of coumarin derivatives against Sporothrix schenckii and Sporothrix brasiliensis. The three-components synthetic routes used for the preparation of coumarin derivatives have proved to be quite efficient and compounds 16 and 17 have been prepared in good yields. The inhibitory activity of nineteen synthetic coumarins derivatives 16a-i and 17a-j were evaluated against Sporothrix spp. yeasts and the most potent compounds were 16b and 17i. However, according to concentrations able to inhibit (minimum inhibitory concentrations) and kill (minimum fungicidal concentrations) the cells, 17i was more effective than 16b against Sporothrix spp. Thus, 17i exhibited good antifungal activity against S. brasiliensis and S. schenckii, suggesting that it is an important scaffold for the development of novel antifungal agents.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
