- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 17, Issue 13, 2017
Current Topics in Medicinal Chemistry - Volume 17, Issue 13, 2017
Volume 17, Issue 13, 2017
-
-
Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology - From Drug Discovery to Nanocarrier Design and Development
Authors: Suhair Sunoqrot, Rania Hamed, Heba Abdel-Halim and Ola TarawnehOver the last few decades, nanotechnology has given rise to promising new therapies and diagnostic tools for a wide range of diseases, especially cancer. The unique properties of nanocarriers such as liposomes, polymeric nanoparticles, micelles, and bioconjugates have mainly been exploited to enhance drug solubility, dissolution, and bioavailability. The most important advantage offered by nanotechnology is the ability to specifically target organs, tissues, and individual cells, which ultimately reduces the systemic side effects and improves the therapeutic index of drug molecules. The contribution of medicinal chemistry to nanotechnology is evident in the abundance of new active molecules that are being discovered but are faced with tremendous delivery challenges by conventional formulation strategies. Additionally, medicinal chemistry plays a crucial role in all the steps involved in the preparation of nanocarriers, where structure-activity relationships of the drug molecule as well as the nanocarrier are harnessed to enhance the design, efficacy, and safety of nanoformulations. The aim of this review is to provide an overview of the contributions of medicinal chemistry to nanotechnology, from supplying drug candidates and inspiring high-throughput nanocarrier design strategies, to structure-activity relationship elucidation and construction of computational models for better understanding of nanocarrier physicochemical properties and biological behavior. These two fields are undoubtedly interconnected and we will continue to see the fruits of that communion for years to come.
-
-
-
Advances in Micelle-based Drug Delivery: Cross-linked Systems
Authors: Ismail Alper Isoglu, Yıldız Ozsoy and Sevil Dincer IsogluThere are several barriers that drug molecules encounter in body beginning from kidney filtration and reticulo-endothelial system (RES) clearance to cellular trafficking. Multifunctional nanocarriers have a great potential for the delivery of drugs by enhancing therapeutic activity of existing methodologies. A variety of nanocarriers are constructed by different material types, which have unique physicochemical properties for drug delivery applications. Micelles formed by amphiphilic polymers are one of the most important drug/nanocarrier formulation products, in which the core part is suitable for encapsulation of hydrophobic agent whereas the outer shell can be utilized for targeting the drug to the disease area. Micelles as self-assembled nanostructures may encounter difficulties in biodistribution of encapsulated drugs because they have a tendency to be dissociated in dilution or high ionic strength. Therefore, therapeutic efficiency is decreased and it requires high amount of drug to be administered to achieve more efficient result. To overcome this problem, covalently stabilized structures produced by cross-linking in core or shell part, which can prevent the micelle dissociation and regulate drug release, have been proposed. These systems can be designed as responsive systems in which cross-links are degradable or hydrolysable under specific conditions such as low pH or reductive environment. These are enhancing characteristics in drug delivery because their cleavage allows the release of bioactive agent encapsulated in the carrier at a certain site or time. This review describes the chemical methodologies for the preparation of cross-linked micelles, and reports an update of latest studies in literature.
-
-
-
Nanocarriers for Effective Brain Drug Delivery
Authors: Tansel Comoglu, Sema Arisoy and Zeynep Burcu AkkusDrug delivery to the brain is an engaged research topic in the field of nanomedicine. The passage of therapeutics into the brain parenchyma is more complicated than other body tissues due to it is limited by restrict barrier structure called blood-brain barrier (BBB). Nanotechnology holds great promise to overcome the BBB and thereby enable treatment of neurodegenerative diseases. Nanocarriers have been investigated several times as effective brain drug delivery systems in the past few decades. Physicochemical properties and surface modifications of these carriers play a significant role in terms of brain up-taking of nanocarriers. Chemical structures of possible nano sized drug delivery systems have an importance in terms of interactions between cell membranes of brain endothelial cell lines and these interactions can be modified with surface coating strategies using suitable agents. Particle size, surface charge and total molecular mass are also crucial issues which require special attention in order to better understand appropriate properties of nanocarriers to overcome the BBB structure. Different strategies have been demonstrated to facilitate the passage of nanoparticles into the brain parenchyma including attachment of targeting ligands on the nanoparticles’ surfaces; this attempt provides site specific action in the brain tissues. This study aims to provide a review of nanocarriers for effective brain drug delivery, in the light of current literature.
-
-
-
Sugar Based Biopolymers in Nanomedicine; New Emerging Era for Cancer Imaging and Therapy
More LessSince last decade, sugar based biopolymers are recognized in nanomedicine as promising materials for cancer imaging and therapy. Their durable, biocompatible and adhesive properties enable the fine tuning of their molecular weights (MW) and their miscellaneous nature makes the molecules acquire various conformations. These in turn provide effective endocytosis by cancer cell membranes that have already been programmed for internalization of different kinds of sugars. Therefore, biocompatible sugar based nanoparticles (SBNPs) are suitable for both cell-selective delivery of drugs and imaging through the human body. Recently, well known sugar-based markers have displayed superior performance to overcome tumor metastasis. Thereby, targeting strategies for cancer cells have been broadened to sugar-based markers as noticed in various clinic phases. In these studies, biopolymers such as chitosan, hyaluronic acid, mannan, dextran, levan, pectin, cyclodextrin, chondroitin sulphate, alginates, amylose and heparin are chemically functionalized and structurally designed as new biocompatible nanoparticles (NPs). The future cancer treatment strategies will mainly comprise of these multifunctional sugar based nanoparticles which combine the therapeutic agents with imaging technologies with the aim of rapid monitoring response to therapies. While each individual imaging and treatment step requires a long time period in effective treatment of diseases, these multifunctional sugar based nanoparticles will have the advantage of rapid detection, right drug efficiency evaluation and immediate interfere opportunity to some important diseases, especially rapidly progressing cancers. In this article, we evaluated synthesis, characterization and applications of main sugar based biopolymers and discussed their great promise in nano-formulations for cancer imaging and therapy. However much should be done and optimized prior to clinical applications of these nano-formulations for an efficient drug treatment without overall toxicity for getting most effective clinical results.
-
-
-
Amphiphilic Cyclodextrin Derivatives for Targeted Drug Delivery to Tumors
Authors: Nazlı Erdogar, Gamze Varan and Erem BilensoyVilliers has extensively studied cyclodextrins, a family of macrocyclic oligosaccharides linked by α-1,4 glycosidic bonds, in different fields since their discovery in 1891. The unique structure enabling inclusion complexation for natural cyclodextrins and cyclodextrin derivatives make them attractive for novel drug delivery systems. Cyclodextrins can be modified with long aliphatic chains to render an amphiphilic property and these different amphiphilic cyclodextrins are able to form nanoparticles without surfactants. In the literature, several different amphiphilic cyclodextrins are reported and applied to drug delivery and targeting especially to tumors. Specificly, folateconjugated amphiphilic cyclodextrin derivatives are used for active tumor targeting of poorly water soluble drugs and improve the efficacy and safety of therapeutic agents. On the other hand, effect of positive surface charge has also been under research in the recent years. Polycationic amphiphilic cyclodextrins have shown promise towards forming small complexes with negatively charged molecules such as drugs or plasmid DNA. Polycationic amphiphilic cyclodextrins enhance interaction with cell membrane due to their net positive surface charge. The scope of this review is to describe potential uses and pharmaceutical applications of tumor-targeted amphiphilic cyclodextrins, with focus on folate-conjugated cyclodextrin derivatives and polycationic cyclodextrin derivatives both studied by our group at Hacettepe University.
-
-
-
rDNA Mediated Bioconjugates: Fusion Proteins and their Intended Use in Medicine
Authors: Ayse Goksu Kaya-Ozsan and Ayse Filiz OnerProtein bioconjugates can be synthesized by using chemical reactions, enzymatic reactions or genetic engineering technologies. Naturally occurred protein fusion event is used on purpose in the development of better biopharmaceuticals by applying genetic engineering methodologies. This review will mainly focus on the types of fusion proteins produced with the use of recombinant DNA technology, by combining genes or parts of genes from the same or different organisms, in order to be used in pharmaceutical applications for several purposes. Main concerns for the development of better biopharmaceuticals include quality, efficacy, safety, immunogenicity and toxicity issues. Extending half-life of the drug to increase patient compliance, targeting the drugs to reduce toxicity, improving the manufacturing environment to reduce the costs and revealing protein interaction technologies to find novel and superior drugs are the main aims of fusion protein production. Here, related tags and examples of fusion methods for different purposes will be explained precisely.
-
-
-
Chemical Structure and Surface Modification of Dendritic Nanomaterials Tailored for Therapeutic and Diagnostic Applications
Authors: Ja Hye Myung, Hao-jui Hsu, Jason Bugno, Kevin A. Tam and Seungpyo HongDendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted.
-
-
-
Template Synthesis of Tubular Nanostructures for Loading Biologically Active Molecules
Authors: Aysegul Karatas and Aslıhan Hilal AlganThe template synthesis is a low cost, simple and versatile nanofabrication method to produce cylindrical/tubular nanostructures with controllable dimensions such as length, diameter and aspect ratio. This method utilizes nanoporous membranes such as anodized aluminum oxide (AAO) or polycarbonate (PC) as templates which have nanosized specific, cylindrical and uniform inner pores to be coated with the desired material. Template synthesized nanotubular structures have been produced from variety of materials including ceramics, polymers and proteins for loading biologically active molecules. Available procedures of material deposition into the template nanopores consist of several techniques like wetting (melt or solution wetting), layer-by-layer (LbL) assembly and sol-gel chemistry. Template synthesis enables not only control of the geometry of the resulting nanostructures but also provides nanovehicles having separated inner and outer surfaces which can be variously functionalized. Tubular nanostructures fabricated by this method have numerous potential applications including delivery of biologically active molecules such as drugs, gene, enzymes and proteins. In this review we aimed to present up-to-date works on the template based synthesis which has greatly facilitated the fabrication of polymer and protein tubular nanostructures, principally. The strategies regarding the synthesis and designing of these promising tubular nanostructures together with recent approaches relevant of drug delivery was also presented.
-
-
-
Nanofibers: New Insights for Drug Delivery and Tissue Engineering
Authors: Mohammad Karim Haidar and Hakan ErogluNanofibers became one of the major research areas for drug delivery and tissue engineering applications in the last decade. Depending on the simplicity of the preparation method and high drug loading capacity, nanofibers provide many advantages for therapeutic perspectives. In addition, combined systems such as embedding nanoparticles into the nanofiber structures provide a second option for delivery of dual active ingredients in the same formulation. The release rate of the active ingredients can also be modified easily by the formulation parameters depending on the desired release time for treatment. Nanofibers systems are used for the delivery of antibiotics, anticancer drugs, analgesics, hemostatic agents and various proteins for tissue engineering purposes. In addition, various applications such as medical device coating also provide new insights for the clinical use of nanofibers. The most commonly used technique for preparation of nanofibers is the electrospinning, which provides feasibility background for scale up process from laboratory to the industrial applications. The main boundary for nanofibers is the limitations for systemic route. Nanofibers are mainly designed for the delivery of active ingredients for local purposes. Regardless of the therapeutic aim, nanofibers are also perfect 3 dimensional structures that are suitable for tissue regeneration. They provide matrix structure for cell regeneration especially in applications for wound healing. This review is mainly focused on the recent advances on the preparation of nanofibers, applications for drug delivery, tissue engineering and wound healing purposes.
-
-
-
Target Recognition Molecules and Molecular Modeling Studies
Authors: Burcu Culhaoglu and Atilla AkdemirTargeted delivery systems aim to deliver drugs to their intended site of action and as such they are expected to show more desired effects and less unwanted effects. The system itself is composed of a vesicle-encapsulated drug with “target recognition molecules” on the envelop. Ideally, these target recognition molecules, being either small non-peptidic molecules or peptides, are basically high-affinity ligands for a receptor or other protein that is expressed specifically and at high concentrations on the target cells. This review will focus on several widely used examples of target recognition molecules and on how molecular modelling studies have been used in the development of nano drug carrier systems in general.
-
-
-
Current HPLC Methods for Assay of Nano Drug Delivery Systems
Authors: Serife Evrim Kepekci Tekkeli and Mustafa Volkan KiziltasIn nano drug formulations the mechanism of release is a critical process to recognize controlled and targeted drug delivery systems. In order to gain high bioavailability and specificity from the drug to reach its therapeutic goal, the active substance must be loaded into the nanoparticles efficiently. Therefore, the amount in biological fluids or tissues and the remaining amount in nano carriers are very important parameters to understand the potential of the nano drug delivery systems. For this aim, suitable and validated quantitation methods are required to determine released drug concentrations from nano pharmaceutical formulations. HPLC (High Performance Liquid Chromatography) is one of the most common techniques used for determination of released drug content out of nano drug formulations, in different physical conditions, over different periods of time. Since there are many types of HPLC methods depending on detector and column types, it is a challenge for the researchers to choose a suitable method that is simple, fast and validated HPLC techniques for their nano drug delivery systems. This review’s goal is to compare HPLC methods that are currently used in different nano drug delivery systems in order to provide detailed and useful information for researchers.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
