- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 16, Issue 20, 2016
Current Topics in Medicinal Chemistry - Volume 16, Issue 20, 2016
Volume 16, Issue 20, 2016
-
-
Antioxidant Therapy Against Trypanosome Infections: A Review Update
More LessTrypanosomiasis is a serious parasitic disease that affects humans and animals resulting in heavy health and economic burdens. Disturbance of redox equilibrium represents a classical challenge for both the host and the parasite during infections with either extracellular African or intracellular American trypanosomes species. This is in spite of existing detoxification mechanisms in both the host and the parasite for maintaining oxidative balance. However, oxidative stress still plays vital roles in the induction of numerous host-associated pathological damages such as anemia, hepatic and renal damages as well as cardiomyopathy while on the other hand, drugs that specifically induce oxidative stress to the parasite have been effective. Therefore, antioxidants have been deemed to play a role in modulating trypanosome infections. This review provides a current update on most of the studies conducted on the potential use of antioxidants as therapeutic agents against trypanosomes. The most frequently studied plant-derived phenolic antioxidants are resveratrol, cucurmin, gallic acid and quercetin while other antioxidants such as vitamins (A, C, E) and trace elements (selenium and iron) have been investigated. Some of the investigations monitored the direct trypanocidal or trypanostatic effects of the antioxidants while others studied the potentials of the antioxidants as adjuncts to trypanocidal drugs. So far, none of these approaches has sufficient data to allow a definite statement on the actual therapeutic potential of antioxidants in the treatment of clinical trypanosomiasis. Therefore, suggestions are made on the most therapeutically and clinically relevant role of antioxidants in trypanosome infections.
-
-
-
Recent Updates on Development of Drug Molecules for Human African Trypanosomiasis
Authors: Ajmer Singh Grewal, Deepti Pandita, Shashikant Bhardwaj and Viney LatherHuman African trypanosomiasis (HAT, better called as sleeping sickness), caused by two morphologically identicalprotozoan parasite Trypanosoma bruceiis transmitted by the bite of tsetse flies of Glossinagenus, mainly in the rural areas of the sub-Saharan Africa. HAT is one of the neglected tropical diseases and is characterized by sleep disturbance as the main symptom, hence is called as sleeping sickness. As it is epidemic in the poorest population of Africa, there is limited availability of safe and cost-effective tools for controlling the disease. Trypanosoma bruceigambiense causes sleeping sickness in Western and Central Africa, whereas Trypanosoma bruceirhodesiense is the reason for prevalence of sleeping sickness in Eastern and Southern Africa. For the treatment of sleeping sickness, only five drugs have been approved suramin, pentamidine, melarsoprol, eflornithine and nifurtimox. Various small molecules of diverse chemical nature have been synthesized for targeting HAT and many of them are in the clinical trialsincluding fexinidazole (phase I completed) and SCYX-7158 (advanced in phase I). The present work has been planned to review various types of small molecules developed in the last 10 years having potent antitrypanosoma activity likely to be beneficial in sleeping sickness along with different natural anti-HAT agents.
-
-
-
Stairway to Heaven or Hell? Perspectives and Limitations of Chagas Disease Chemotherapy
More LessIn this review, we intend to provide a general view of the evolution of experimental studies in the area of chemotherapy for Chagas disease. We can follow the process of drug development through three phases. The first phase began almost at the same time as the discovery made by Carlos Chagas and proceeds to 1970, during which time an extensive list of compounds was subjected to preclinical and clinical trials. The second phase began with the introduction of nifurtimox and benznidazole into the clinical setting, followed with the search for alternative drugs. In this phase, a dichotomy existed between rational and empirical approaches in preclinical studies. The third phase began with the unravelling of the T. cruzi genome. The development of transgenic parasites has allowed the development of solid HTS protocols, and the establishment of bioluminescent T. cruzi has allowed in vivo drug evaluations using a reduced number of animals. Among the wide variety of compounds subjected to preclinical studies, we have discovered azolic and non-azolic inhibitors of sterol C14α-demethylase (CYP51) and nitro compounds. Two compounds evaluated during the second phase, namely, MK-436 and allopurinol, could be revisited. Clinical studies of posaconazole and E1224 yielded disappointing results, and it is critical to understand the reason for their failure as a monotherapy. Currently, the combination and repositioning of drugs with different mechanisms of action are complementary approaches. The use of drug combinations, particularly those of nitro compounds with CYP51 inhibitors, is considered a real alternative for the treatment of Chagas disease.
-
-
-
Advances and Progress in Chagas Disease Drug Discovery
Authors: Leonardo G. Ferreira, Marcelo T. de Oliveira and Adriano D. AndricopuloChagas disease represents a serious burden for millions of people worldwide. Transmitted by the protozoan parasite Trypanosoma cruzi, this neglected tropical disease causes more than 10,000 deaths each year and is the main cause of heart failure in Latin America, where it is endemic. Although most cases are concentrated in Latin American countries, Chagas disease has been increasingly reported in non-endemic regions, where the low level of public awareness on the subject contributes to the growing prevalence of the disease. The available medicines are characterized by several safety and efficacy drawbacks that prevent millions of people, particularly those with advanced disease, from receiving adequate treatment. This urgent need has stimulated the emergence of diverse initiatives dedicated to the research and development (R) of novel therapeutic agents for Chagas disease. Public-private partnerships have been responsible for a significant increase in the investments in R programs and major advancements have been achieved over the past ten years. A number of collaborative projects have been leveraged by this organizational model, which privileges sharing of data, expertise, and resources between research institutions and pharmaceutical companies. Among the current strategies employed by these consortia, target-based and phenotypic screenings have achieved the most promising results. This article provides an overview on the current status and recent advances in Chagas disease drug discovery.
-
-
-
Recent Development in Identification of Potential Novel Therapeutic Targets Against Trypanosomatids
Authors: Rajender Kumar, Parvati Sharma, Deepak Kumar Gaur and Shikha JainTrypanosomatids continue to cause suffering among human and wide range of animal population and have enormous health, social and economic impact. The present constraints in control of trypanosomosis are availability of limited number of effective drugs with narrow safety index, nonavailability of vaccines due to immune evasion mechanisms developed by the parasite and drug resistance problem. The kinetoplastids/ trypanosomatids possess unique kinetoplast DNA structure and express hundreds of membrane transport proteins that allow them to take up nutrients, establish ion gradients, efflux metabolites, translocate compounds from one intracellular compartment to another, and take up or export drugs. In this context, there is urgent need of application of innovative strategies for identification of novel therapeutic drug targets affecting metabolic pathways essential for survival of the parasites using modern molecular approaches (functional/genomics/ proteomics/bioinformatics). In this review we have discussed existing drugs in use for treatment and outline of emerging approaches in identification and evaluation of potential novel therapeutic targets against trypanosomatids.
-
-
-
Chemotherapeutic Approaches Against Trypanosoma evansi: Retrospective Analysis, Current Status and Future Outlook
Authors: Nitu S. Rathore, Anju Manuja, Balvinder Kumar Manuja and Shalki ChoudharyTrypanosoma evansi, the causative agent of surra, is pathogenic to a wide variety of wild and domestic animals, including equines, camels, goats, sheep, cattle, buffaloes, pigs, dogs, tigers, elephants etc. The infection is mainly restricted to animals but ability to infect human beings has also been reported due to the lack of efficient apolipoprotein L 1. The parasite is mechanically transmitted by blood-sucking flies such as Tabanus and Stomoxys species. The disease has a major economic impact in tropical countries. The control of trypanosomosis may be aimed either at the fly or against the parasite. Due to difficulties in large scale fly control, trypanocides have been widely used to control the disease. However, current chemotherapeutic agents are limited in number and usually associated with severe side effects. Moreover, current therapeutic agents are far from ideal. The emergence of drug resistant trypanosomes results in failure of prophylaxis and treatment of the disease. Retrospective and prospective studies on drug and delivery against T. evansi will provide an overview of the chemotherapeutic and prophylactic measures in vogue and suggest future strategies for combating this neglected disease. In this perspective, we have reviewed the currently used drugs available for prophylaxis and therapy, their mechanism of action and associated limitations. The options available for prophylaxis and therapy along with potential new molecules/therapeutic agents and novel approaches for delivery of the drugs to enhance their therapeutic value are presented in this review.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
