- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 16, Issue 18, 2016
Current Topics in Medicinal Chemistry - Volume 16, Issue 18, 2016
Volume 16, Issue 18, 2016
-
-
Nano Particles: Emerging Warheads Against Bacterial Superbugs
Infectious diseases are one of the major causes of morbidity and mortality in children in developing and underdeveloped countries. Limited knowledge of targets (cell wall synthesis, replication, transcription, protein synthesis) for antibiotics and lack of novel antibiotics have lead to an emergence of different level of resistance in bacterial pathogens. Multidrug resistance is the phenomenon by which the bacteria exerts resistance against the two or more structurally unrelated drugs/antibiotics. A common goal in the post-genomic era is to identify novel targets/drugs for various life threatening bacterial pathogens. Nanoparticles are broadly defined as submicron colloidal particles of size less than 1μm. Nanoparticles of size less than 100nm are the most promising warheads to overcome microbial drug resistance because they can act as antibacterial/antibiotic modulating agents at the site of infection and may have more than one mode of action. These nanoparticles will be of immense help in transporting drugs directly at the infected sites. Thus prevent drug resistance development to a great extent. In this review, the key mechanisms of resistance in bacterial superbugs have been discussed as well as how nanoparticles can overcome them. It is hypothesized that the nanoparticles can overcome the drug resistance via a novel mechanism of action. Additionaly, nanopaticles may also work synergistically with antibiotics via increased uptake, decreased efflux and inhibition of biofilm formation. The degradation by metallo beta lactamases and synthesis of porins may also be facilitated through these nanoparticles.
-
-
-
The Glitter of Carbon Nanostructures in Hybrid/Composite Hydrogels for Medicinal Use
Authors: Daniel Iglesias, Susanna Bosi, Michele Melchionna, Tatiana Da Ros and Silvia MarchesanIn recent years, we have witnessed to fast developments in the medicinal field of hydrogels containing various forms of integrated nanostructured carbon that adds interesting mechanical, thermal, and electronic properties. Besides key advances in tissue engineering (especially for conductive tissue, such as for the brain and the heart), there has been innovation also in the area of drug delivery on-demand, with engineered hydrogels capable of repeated response to light, thermal, or electric stimuli. This mini-review focusses on the most promising developments as applied to the gelation of protein/ peptide (including self-assembling amino acids and low-molecular-weight gelators), polysaccharide, and/or synthetic polymer components in medicine. The emerging field of graphene-only hydrogels is also briefly discussed, to give the reader a full flavor of the rising new paradigms in medicine that are made possible through the integration of nanostructured carbon (e.g., carbon nanotubes, nanohorns, nanodiamonds, fullerene, etc.). Nanocarbons are offering great opportunities to bring on a revolution in therapy that the modern medicinal chemist needs to master, to realise their full potential into powerful therapeutic solutions for the patient.
-
-
-
Advancements in Devices and Particle Engineering in Dry Powder Inhalation Technology
Authors: Mithun Varghese Vadakkan and G. S. Vinod KumarDry powder inhalers (DPI) attracted the attention of pharmaceutical field due to its enlarging market share in inhalable formulations. These formulations also pose patient compliance and good shelf life. Earlier DPI formulations were intended for local effect in lung (asthma and chronic obstructive pulmonary diseases), whereas 21st century witnessed formulations intended for systemic effect too. A better understanding of physiology of lung and fluidics of air flow helped in targeting alveoli using DPI technology. Modern characterization tools also accelerated the research pace. In addition to the synthetic molecules, DPI also was proved to be a better system for delivering biological molecules including vaccines. This review includes the mechanisms of drug deposition, advancements in the fields of DPI devices, various characterization tools and particle engineering. In this review we have related the chronological advancement of inhalational technology starting from 1788 AD to the present.
-
-
-
The Unexpected Advantages of Using D-Amino Acids for Peptide Self- Assembly into Nanostructured Hydrogels for Medicine
Authors: Michele Melchionna, Katie E. Styan and Silvia MarchesanSelf-assembled peptide hydrogels have brought innovation to the medicinal field, not only as responsive biomaterials but also as nanostructured therapeutic agents or as smart drug delivery systems. D-amino acids are typically introduced to increase the peptide enzymatic stability. However, there are several reports of unexpected effects on peptide conformation, self-assembly behavior, cytotoxicity and even therapeutic activity. This mini-review discusses all the surprising twists of heterochiral self-assembled peptide hydrogels, and delineates emerging key findings to exploit all the benefits of D-amino acids in this novel medicinal area.
-
-
-
Biosynthesis of Fluorescent Bi2S3 Nanoparticles and their Application as Dual-Function SPECT-CT Probe for Animal Imaging
Authors: Imran Uddin, Absar Ahmad, Ejaz Ahmad Siddiqui, Sk. Hasanur Rahaman and Sanjay GambhirBismuth sulphide (Bi2S3) is an excellent semiconductor and its nanoparticles have numerous significant applications including photovoltaic materials, photodiode arrays, bio-imaging, etc. Nevertheless, these nanoparticles when fabricated by chemical and physical routes tend to easily aggregate in colloidal solutions, are eco-unfriendly, cumbrous and very broad in size distribution. The aim of the present manuscript was to ecologically fabricate water dispersible, safe and stable Bi2S3 nanoparticles such that these may find use in animal imaging, diagnostics, cell labeling and other biomedical applications. Herein, we for the first time have biosynthesized highly fluorescent, natural protein capped Bi2S3 nanoparticles by subjecting the fungus Fusarium oxysporum to bismuth nitrate pentahydrate [Bi(NO3)3.5H2O] alongwith sodium sulphite (Na2SO3) as precursor salts under ambient conditions of temperature, pressure and pH. The nanoparticles were completely characterized using recognized standard techniques. These natural protein capped Bi2S3 nanoparticles are quasi-spherical in shape with an average particle size of 15 nm, maintain long term stability and show semiconductor behavior having blue shift with a band gap of 3.04 eV. Semiconductor nanocrystals are fundamentally much more fluorescent than the toxic fluorescent chemical compounds (fluorophores) which are presently largely employed in imaging, immunohistochemistry, biochemistry, etc. Biologically fabricated fluorescent nanoparticles may replace organic fluorophores and aid in rapid development of biomedical nanotechnology. Thus, biodistribution study of the so-formed Bi2S3 nanoparticles in male Sprague Dawley rats was done by radiolabelling with Technitium-99m (Tc-99m) and clearance time from blood was calculated. The nanoparticles were then employed in SPECT-CT probe for animal imaging where these imparted iodine equivalent contrast.
-
-
-
Development of Crystalline Cellulosic Fibres for Sustained Release of Drug
Authors: D. Mishra, V. Yadav, Puja Khare, Jyotshna, M. R. Das, Abha Meena and K. ShankerNatural quinoline alkaloid camptothecin (CPT) is used for the treatment of colon, lung, breast and ovarian cancers still facing challenges due to low solubility in aqueous and biological fluids. Its lactone form easily converts into a toxic carboxylic form at slightly basic pH, typical in blood and tissue fluid has rapid clearance from systemic administration. We report a new approach based on micro crystalline cellulose (MCC) and nano crystalline cellulose (NCC) isolated from natural sources such as Cymbopogan flexuosus to stabilize and regulate the release kinetics of CPT in physiological solution. Langmuir and Freundlich isotherm studies approve that degree of crystallinity i.e. ratio of amorphous and crystalline cellulose regulate the adsorption of CPT. The freeze dried celluloses of Cymbopogan flexuosus origin (MCC and NCC) further were optimized for drug delivery with a mimicked physiologically relevant solution. Both carriers can significantly extend the release of drug as compared to reported values, however, NCC showed better results. Not only the crystallinity but crystal size and hydrogen bonding play critical role in drug release. Free diffusion of drug into physiological solution follows the Ritger- Peppes kinetic model. The coefficient of the model signifies the Fickian diffusion mechanism of release. The investigation indicates that NCC cellulosic matrix can act as a better carrier of CPT for its sustained release formulation.
-
-
-
Biosynthesis of Anti-Proliferative Gold Nanoparticles Using Endophytic Fusarium oxysporum Strain Isolated from Neem (A. indica) Leaves
Authors: Ejaz Ahmad Siddiqui, Absar Ahmad, Anju Julius, Asad Syed, Shadab Khan, Mahesh Kharat, Kalpana Pai, Narendra Kadoo and Vidya GuptaHere we report a simple, rapid, environment friendly approach for the synthesis of gold nanoparticles using neem (Azadirachta indica A. Juss.) fungal endophyte, which based upon morphological and cultural characteristics was eventually identified as Fusarium oxysporum. The aqueous precursor (HAuCl4) solution when reacted with endophytic fungus resulted in the biosynthesis of abundant amounts of well dispersed gold nanoparticles of 10-40 nm with an average size of 22nm. These biosynthesized gold nanoparticles were then characterized by standard analytical techniques such as UV-Visible spectroscopy, X-ray diffraction, Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy. Cytotoxic activity of these nanoparticles was checked against three different cell types including breast cancer (ZR-75-1), Daudi (Human Burkitt’s lymphoma cancer) and normal human peripheral blood mononuclear cells (PBMC), where it was found that our gold nanoparticles are anti-proliferative against cancer cells but completely safe toward normal cells. In addition to this, assessment of toxicity toward human RBC revealed less than 0.1 % hemolysis as compared to Triton X-100 suggesting safe nature of our biosynthesized gold nanoparticles on human cells. Also, our nanoparticles exhibited no anti-fungal (against Aspergillus niger) or anti-bacterial [against Gram positive (Bacillus subtilis & Staphylococcus aureus) and Gram negative (Escherichia coli & Pseudomonas aeruginosa) bacteria] activity thus suggesting their non-toxic, biocompatible nature. The present investigation opens up avenues for ecofriendly, biocompatible nanomaterials to be used in a wide variety of application such as drug delivery, therapeutics, theranostics and so on.
-
-
-
Synthesis of Gold Mediated Biocompatible Nanocomposite of Lactone Enriched Fraction from Sahadevi (Vernonia cinerea Lees): An Assessment of Antimalarial Potential
Authors: Jyotshna, Karuna Shanker, Puja Khare, Nimisha Tiwari, Shilpa Mohanty, Dnyaneshwar U. Bawankule and Anirban PalMetals reduction into submicro/nano size through bhasma preparations for therapeutic use is well established in ancient traditional system of Indian medicines i.e. Ayurveda. Recently, nanotechnology has drawn the attention of researchers to develeope various size and shape nanoparicles / composite for number of applications.In this article, we report the enrichment of lactone enriched fraction (LEF) by liquid-liquid portioning of Vernonia cinerea metabolic extract and sysnthesis of mediated nano-gold composite (LEF-AuNPs) in single step process. The morphological characteristic based on transmission electron microscope (TEM) image analysis showed that LEF-AuNPs were predominantly nanopolygons and nanobots in shapes ranging from 50-200 nm in size. Abundance of phytochemicals in both LEF and LEF-AuNPs was dissimilar. In LEF, montanol- a diterpenoid, while in LEF-AuNPs, neophytadiene- a phytanes was the major compound. HPLC profile of relatively polar compounds also varied drastically. In-vitro biocompatibility, cytotoxicity [MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) based assay] and storage stabilitiy of LEF-AuNPs were evaluated. The moderate ability of LEF-AuNPs to restrict parasitaemia, extended mean survival time of mice infected with Plasmodium berghei and lack of any evident toxicity provides new opportunities for the safe delivery and applications of such nanocomposites in malaria therapy.
-
-
-
Development of Quercetin Based Nanodispersions
Polyphenols are a large group of structurally diverse natural products, including flavonoids. One of the most bioactive compounds of this class is the flavonol quercetin, a recognized antioxidant. Despite several studies were carried out aiming to develop nanoformulations with secondary metabolites, to our knowledge, quercetin was not used as raw material for nanodispersion production without coating polymers. This type of nanosize formulation is often prepared using organic solvents and quercetin nanodispersions were prepared by emulsification evaporation technique, using 16.22 experimental factorial design, (“surfactant type” evaluated at 6 levels, “surfactant amount” and “stirring speed” evaluated at 2 levels). Variance analysis, after one day of nanodispersions preparation, revealed that only the surfactant type was statistically significant on particle size, while none of factors presented statistically significant effect on polydispersity index. Variance analysis after seven days of nanodispersions preparation revealed that either surfactant type and surfactant amount presented significant effect on particle size, while only surfactant type influenced polydispersity index. Some nanodispersions presented small diameter and narrow size distribution, suggesting potential stability of these systems. Special attention was given to nanodispersion prepared with 3 % (w/w) of polyethylene glycol 400 monooleate (expressed as function of surfactant concentration at aqueous phase). It presented mean droplet size of 129.4 ± 0.5 nm and polydispersity index of 0.173 ± 0.018, after 7 days of preparation. Low polydispersity index indicates a high homogeneity concerning particle size distribution and suggests stability of the system. Moreover, absence of coating polymers and utilization of a low energy method would be an advantage in terms of reducing costs for industrial application, without any nanosize impairment.
-
-
-
Development and Characterization of Cassia grandis and Bixa orellana Nanoformulations
Cassia grandis and Bixa orellana are important plant species with folk use and great potential for phytopharmaceuticals. Nanodispersions are disperse systems of insoluble or immiscible substances in a liquid medium that may be prepared with or without coating polymers. To our knowledge, no studies were carried in order to achieve coating-polymer free nanoformulations using B. orellana extract or any C. grandis-based nanoformulations. Thus, on the present study we aimed to develop C. grandis nanoformulations using three different coating polymers (Eudragit® L 100 55, PEG 4000 and Kollicoat®), while B. orellana nanodispersions were obtained using different surfactants (polysorbate 80, polysorbate 20, polyethylene glycol 400 monooleate, polyethylene glycol 600 monooleate, polyethylene glycol 400 dioleate and polyethylene glycol 600 dioleate) as coating polymer-free nanoformulations. Characterization of nanoformulations was performed by different parameters, including particle size, polydispersity index and zeta-potential. Our results suggested that some optimal nanoformulations were obtained for both plant species. Moreover, possible stable behavior was observed during storage period for C. grandis (30 days) and B. orellana (21 days). On this context, the present study contributes to nanobiotechnology development of phytopharmaceuticals, allowing achievement of novel nano-delivery systems with two important folk medicinal plant extracts and making them potential products for innovative phytopharmaceuticals.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
