- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 16, Issue 12, 2016
Current Topics in Medicinal Chemistry - Volume 16, Issue 12, 2016
Volume 16, Issue 12, 2016
-
-
Why Do We Need New Drug Classes for HIV Treatment and Prevention?
Authors: Abdul A. Waheed and Gilda TachedjianThe biomedical intervention that has had a major impact on the natural history of HIV and on the global HIV epidemic is antiretroviral therapy (ART). However, the emergence of drug-resistant HIV, an inevitable consequence of increasing use of antiretroviral drugs, poses a major threat to ART success. At the turn of this century, access to life-saving ART was accelerated in low and middle-income countries with the Millennium Development Goal of 15 million individuals receiving ART by 2015 expected to be achieved. However, ART access needs to continue to expand to help bring HIV under control by 2030. The standard of care for people living with HIV in resource- limited settings differs dramatically compared to high-income countries, and not unexpectedly, ART rollout in these settings has resulted in an increase in acquired and transmitted drug resistance. Also of concern, the same drug classes used for ART have been approved or are being progressed for HIV prevention and drug resistance could mitigate their effectiveness for treatment and prevention. In the absence of an effective HIV vaccine and cure, it is imperative that the antiretroviral drug pipeline contains new classes of HIV inhibitors that are active against circulating drug-resistant strains. Studies to advance our fundamental understanding of HIV replication needs to continue, including the interplay between virus and host cell factors, to identify and characterize new drug targets for chemotherapeutic intervention.
-
-
-
Computational Modelling in Studies for Hepatitis C Virus (HCV) NS3 Protease
More LessHepatitis C virus (HCV) infected up to 3% of global human population. More than 350 thousand die annually due to liver cirrhosis and hepatocellular carcinoma, developed at the late stages of the disease. The typical ways of HCV transmission are: transfusion of contaminated blood and blood products; sharing syringes among intravenous drug users; use of poorly sterilized medical instruments in certain countries with bad sterilization practice. HCV is hard to identify, at early stages the disease is asymptomatic and progresses slowly. HCV RNA genome is highly variable, and thus interferes developing of a vaccine. HCV NS3 protease has received close attention as the promising drug target. Recent approval of Boceprevir and Telaprevir, the first inhibitors of HCV NS3 protease, has let increase effectiveness of anti-HCV therapy. Though these new medicines show drawbacks in drug resistance and genotype coverage, second and third generation of HCV protease inhibitors will overcome them. Computational modelling had an impact role in these discoveries. Involvement of modelling in studies for Hepatitis C (HCV) NS3 protease is considered in this review.
-
-
-
Current Drug Discovery for Anti-hepatitis C Virus Targeting NS4B
Authors: Zhenya Wang, Xinli Chen, Chunli Wu, Haiwei Xu and Hongmin LiuHepatitis C virus (HCV) infection is a major worldwide epidemic disease. It is estimated that more than 170 million individuals are infected with HCV and with three to four million new cases each year. Many new direct-acting antiviral (DAA) agents that specifically target HCV NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant effect for the patient and for the market recently. The non-structural 4B (NS4B) protein, is among the least characterized of the HCV proteins. A variety of functions have been recognized for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. In order to maximize antiviral efficacy and prevent the emergence of resistance, novel NS4B inhibitors have been subjected to pharmacological studies. In this review, we discussed current understanding of the structure and function of NS4B, and novel drug discoveries targeting NS4B as anti-hepatitis C virus such as sulfonamide, piperidine, carboxamide, piperazinone and quinoline derivatives within the last three years.
-
-
-
A Comprehensive Insight into the Chemical Space and ADME Features of Small Molecule NS5A Inhibitors
Non-structural 5A (NS5A) protein plays a crucial role in the replication of hepatitis C virus (HCV) and during the past decade has attracted increasing attention as a promising biological target for the treatment of viral infections and related disorders. Small-molecule NS5A inhibitors have shown significant antiviral activity in vitro and in vivo. Several lead molecules are reasonably regarded as novel highly potent drug candidates with favorable ADME features and tolerable side effects. The first-in-class daclatasvir has recently been launched into the market and 14 novel molecules are currently under evaluation in clinical trials. From this perspective, we provide an overview of the available chemical space of small-molecule NS5A inhibitors and their PK properties, mainly focusing on the diversity in structure and scaffold representation.
-
-
-
In Silico Approaches to the Design of NS5A Inhibitors
In recent years, nonstructural protein 5A (NS5A) has rapidly emerged as a promising therapeutic target for Hepatitis C (HCV) virus therapy. It is involved in both viral RNA replication and virus assembly and NS5A plays a critical role in the regulation of HCV life cycle. NS5A replication complex inhibitors (NS5A RCIs) have demonstrated strong antiviral activity in vitro and in vivo. However, wild-type resistance mutations and a wide range of genotypes significantly reduce their clinical efficacy. The exact mechanism of NS5A action still remains elusive, therefore several in silico models have been constructed to gain insight into the drug binding and subsequent structural optimization to overcome resistance. This paper provides a comprehensive overview of the computational studies towards NS5A mechanism of action and the design of novel small-molecule inhibitors.
-
-
-
New Non-Nucleocide NS5B Protein Inhibitors for the Treatment of Chronic Hepatitis C Infection
Authors: Li-hong Shan, Ying Liu, Yong-hong Li, Hong-min Liu and Yu KeHepatitis C virus is one of the major causative pathogens of chronic hepatitis and the second most common cause of hepatocellular cancer. The virally encoded NS5B RNA-dependent RNA polymerase is a vital component of the replicase complex that orchestrates the replication process leading to the production of progeny virus. In recent years, developing novel drugs to target NS5B polymerase has become one of the important strategies for the treatment of chronic hepatitis C infection. This review highlights the structure and scaffold of the non-nucleoside NS5B inhibitors represented in the past five years.
-
-
-
HCV Inhibitors: Role of Compounds from Botanical Sources
Authors: Vaishali M. Patil, Neeraj Masand and Satya Prakash GuptaThe developing number of hepatitis C virus infected cases worldwide has threatened people’s health. The available therapeutic options have low specificity, side effects and high rate of drug resistance and thus potentiate the need for novel effective anti-HCV drugs. Agents obtained from natural sources offer an enormous scope of structural diversity and broad therapeutic range of coverage. This review summarizes the research and development of anti-HCV agents (plant extracts/isolated components) obtained from various natural sources along with the associated mechanism of HCV inhibition. Some of the reported examples include triterpenes, naringenin, Proanthocyanidin, curcumin, Epigallocatechin-3-gallate, quercetin and abrogates having diverse anti-HCV properties. The compiled knowledge regarding anti-HCV agents from natural sources will provide considerable information for developing novel safe and effective anti-HCV drugs.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
