- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 15, Issue 16, 2015
Current Topics in Medicinal Chemistry - Volume 15, Issue 16, 2015
Volume 15, Issue 16, 2015
-
-
Microbial Biofilms: Impact on the Pathogenesis of Periodontitis, Cystic Fibrosis, Chronic Wounds and Medical Device-Related Infections
The majority of chronic infections are associated with mono- or polymicrobial biofilms, having a significant impact on the patients’ quality of life and survival rates. Although the use of medical devices revolutionized health care services and significantly improved patient outcomes, it also led to complications associated with biofilms and to the emergence of multidrug resistant bacteria. Immunocompromised patients, institutionalized or hospitalized individuals, elderly people are at greater risk due to life-threatening septic complications, but immunocompetent individuals with predisposing genetic or acquired diseases can also be affected, almost any body part being able to shelter persistent biofilms. Moreover, chronic biofilm-related infections can lead to the occurrence of systemic diseases, as in the case of chronic periodontitis, linked to atherosclerosis, cardiovascular disease and diabetes. The more researchers discover, new unknown issues add up to the complexity of biofilm infections, in which microbial species establish relationships of cooperation and competition, and elaborate phenotypic differentiation into functional, adapted communities. Their interaction with the host’s immune system or with therapeutic agents contributes to the complex puzzle that still misses a lot of pieces. In this comprehensive review we aimed to highlight the microbial composition, developmental stages, architecture and properties of medical biofilms, as well as the diagnostic tools used in the management of biofilm related infections. Also, we present recently acquired knowledge on the etiopathogenesis, diagnosis and treatment of four chronic diseases associated with biofilm development in tissues (chronic periodontitis, chronic lung infection in cystic fibrosis, chronic wounds) and artificial substrata (medical devices-related infections).
-
-
-
Metallic-Based Micro and Nanostructures with Antimicrobial Activity
The spectacular progress of research in the nanotechnology field led to the achievement of important knowledge of materials at the atomic and molecular scale and the extent of the use of nanoparticles in the design of medical products, ecological processes, cosmetics and other biotechnological applications. One of the current focuses of the medical applications of nanotechnology is the development of new strategies to inhibit the activity of different microorganisms. The purpose of this review was to present the antimicrobial activity of metal cations in micro- and nanoparticulate forms and the dependence of this biological activity on shape, size and physico-chemical conditions.
-
-
-
Molecular Mechanism and Targets of the Antimicrobial Activity of Metal Nanoparticles
Authors: Faik N. Oktar, Mehmet Yetmez, Denisa Ficai, Anton Ficai, Florica Dumitru and Alexandra PicaThe emergence of multi-resistant bacteria to drugs is recognized as a major cause of the increasing number of deaths in hospitals. Killing these bacteria require multiple expensive drugs that can have side effects. Metal nanoparticles may provide a new strategy to combat them. Due the antimicrobial and antiviral properties, nanoparticles (NPs) have outstanding biological properties that can be handled properly for desired applications. This review presents antibacterial and antiviral activity of metal NPs, including the molecular mechanisms by which NPs annihilate multidrug-resistant bacteria.
-
-
-
Magnetite Nanoshuttles for Fighting Staphylococcus aureus Infections: A Recent Review
More LessIn recent years, severe infections caused by the Gram positive pathogen Staphylococcus aureus have emerged both in community and clinical settings. The increased infection rates are explained by the versatility and resistance of this pathogen, which produces a wide arsenal of virulence factors, organize within difficult to eradicate biofilms and displays various resistance genes, leading current antibiotic therapies ineffective. Nanotechnological progress highlights the impact of magnetic nanoparticles in the current and future diagnosis and therapy procedures of the infectious diseases. These nanostructures could be used as efficient carriers for many natural and synthetic antimicrobials, which may be further utilized for the development of soluble anti-Staphylococcal formulations and improved surfaces and coatings of different uses, optimized to reduce attachment and biofilm formation.
-
-
-
Applications and Toxicity of Silver Nanoparticles: A Recent Review
Silver nanoparticles (AgNPs) exhibit a consistent amount of flexible properties which endorse them for a larger spectrum of applications in biomedicine and related fields. Over the years, silver nanoparticles have been subjected to numerous in vitro and in vivo tests to provide information about their toxic behavior towards living tissues and organisms. Researchers showed that AgNPs have high antimicrobial efficacy against many bacteria species including Escherichia coli, Neisseria gonorrhea, Chlamydia trachomatis and also viruses. Due to their novel properties, the incorporation of silver nanoparticles into different materials like textile fibers and wound dressings can extend their utility on the biomedical field while inhibiting infections and biofilm development. Among the noble metal nanoparticles, AgNPs present a series of features like simple synthesis routes, adequate and tunable morphology, and high surface to volume ratio, intracellular delivery system, a large plasmon field area recommending them as ideal biosensors, catalysts or photo-controlled delivery systems. In bioengineering, silver nanoparticles are considered potentially ideal gene delivery systems for tissue regeneration. The remote triggered detection and release of bioactive compounds of silver nanoparticles has proved their relevance also in forensic sciences. The authors report an up to date review related to the toxicity of AgNPs and their applications in antimicrobial activity and biosensors for gene therapy.
-
-
-
Biomedical Applications of Gold Nanoparticles
Authors: Daniela Cabuzu, Andreea Cirja, Rebecca Puiu and Alexandru Mihai GrumezescuGold nanoparticles may be used in different domains, one of most important being the biomedical field. They have suitable properties for controlled drug delivery, cancer treatment, biomedical imaging, diagnosis and many others, due to their excellent compatibility with the human organism, low toxicity and tunable stability, small dimensions, and possibility to interact with a variety of substances. They also have optical properties, being able to absorb infrared light. Moreover, due to their large surface and the ability of being coated with a variety of therapeutic agents, gold nanoparticles have been showed a great potential to be used as drug delivery systems. Gold nanoparticles are intensively studied in biomedicine, and recent studies revealed the fact that they can cross the blood-brain barrier, may interact with the DNA and produce genotoxic effects. Because of their ability of producing heat, they can target and kill the tumors, being used very often in photodynamic therapy. Gold nanoparticles can be synthesized in many ways, but the most common are the biological and chemical methods, however the chemical method offers the advantage of better controlling the size and shape of the nanoparticles. In this review, we present the principal applications of gold nanoparticles in the biomedical field, like cancer treatment, amyloid-like fibrillogenesis inhibitors, transplacental treatment, the development of specific scaffolds and drug delivery systems.
-
-
-
Insights on Metal Based Dental Implants and their Interaction with the Surrounding Tissues
At present, the use of dental implants is a very common practice as tooth loss is a frequent problem and can occur as a result of disease or trauma. An implant is usually made of biocompatible materials that do not cause rejection reactions and allow the implant union with the respective bone. To achieve this goal, the implant surface may have different structures and coatings, generally used to increase the adherence of the implant to the bone and to decrease the risk of the periimplantar inflammatory reactions. This review gives some insights of the metal based materials used for dental implants, their limits, improvement strategies as well as the pathophysiology, diagnosis, treatment and prevention of periimplantary diseases.
-
-
-
Magnetite: From Synthesis to Applications
Authors: Gozde Unsoy, Ufuk Gunduz, Ovidiu Oprea, Denisa Ficai, Maria Sonmez, Marius Radulescu, Mihaela Alexie and Anton FicaiIn this review the synthesis, functionalization and some applications of magnetite nanoparticles (MNPs) were highlighted. It is our intention to highlight the correlations between the synthesis routes, related synthesis parameters, functionalization strategies and the properties expected for the materials containing MNPs. The uses of MNPs are strongly influenced by the properties of the materials. Therefore this review is trying to discuss the applications of the magnetite and magnetite based nanomaterials by taking into account all the factors that can influence the properties of the final materials and consequently their potential applications.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
