Skip to content
2000
Volume 3, Issue 3
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Fluoroquinolones trap gyrase and topoisomerase IV on DNA as ternary complexes that block the movement of replication forks and transcription complexes. Studies with resistant mutants indicate that during complex formation quinolones bind to a surface α-helix of the GyrA and ParC proteins. Lethal action is a distinct event that is proposed to arise from release of DNA breaks from the ternary complexes. Many bacterial pathogens are exhibiting resistance due to alterations in drug permeability, drug efflux, gyrase-protecting proteins, and target topoisomerases. When selection of resistant mutants is described in terms of fluoroquinolone concentration, a threshold (mutant prevention concentration, MPC) can be defined for restricting the development of resistance. MPC varies among fluoroquinolones and pathogens, when combined with pharmacokinetics, MPC can be used to identify compounds least likely to enrich mutant subpopulations. Use of suboptimal doses and compounds erodes the efficacy of the class as a whole because resistance to one quinolone reduces susceptibility to others and / or increases the frequency at which resistance develops. When using fluoroquinolones in combination therapy, the development of resistance may be minimized by optimizing regimens for pharmacokinetic overlap.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026033452537
2003-01-01
2025-09-15
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026033452537
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test