Skip to content
2000
Volume 25, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266435068250902102329
2025-09-03
2026-01-07
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/27/CTMC-25-27-01.html?itemId=/content/journals/ctmc/10.2174/0115680266435068250902102329&mimeType=html&fmt=ahah

References

  1. SheerahH.A. AlgwizaniA.R. AlghamdiR.Q. AlmohammadiE.L. Al-QunaibeA.M. DadaH.M. AlgarniH.S. TunkarS.M. AltamimiA.M. AlmuzainiY.S. SelbieD. Strengthening global health security through antimicrobial resistance control: Insights from Saudi Arabia.J. Infect. Public. Health.202518710278810.1016/j.jiph.2025.102788 40347855
    [Google Scholar]
  2. About antimicrobial resistance.Available from: https://www.cdc.gov/antimicrobial-resistance/about/index.html.2025
  3. TanwirF. ZaidiS.N. HafeezN. BibiT. KhalidA.B. SattiA.W. Antimicrobial resistance: A global dilemma.J. Res. Med. Dent. Sci.20231112916
    [Google Scholar]
  4. SalamM.A. Al-AminM.Y. SalamM.T. PawarJ.S. AkhterN. RabaanA.A. AlqumberM.A.A. Antimicrobial resistance: A growing serious threat for global public health.Healthcare20231113194610.3390/healthcare11131946 37444780
    [Google Scholar]
  5. LooC.S.N. LamN.S.K. YuD. SuX. LuF. Artemisinin and its derivatives in treating protozoan infections beyond malaria.Pharmacol. Res.201711719221710.1016/j.phrs.2016.11.012 27867026
    [Google Scholar]
  6. KshirsagarS.G. RaoR.V. Antiviral and immunomodulation effects of artemisia.Medicina202157321710.3390/medicina57030217 33673527
    [Google Scholar]
  7. WaniK.I. ChoudharyS. ZehraA. NaeemM. WeathersP. AftabT. Enhancing artemisinin content in and delivery from Artemisia annua: A review of alternative, classical, and transgenic approaches.Planta202125422910.1007/s00425‑021‑03676‑3 34263417
    [Google Scholar]
  8. SwamikannuB. UmapathyV.R. NatarajanP.M. NandiniM.S. Queency StylinA.G.S. VimalaraniV. RajinikanthS. Unlocking the therapeutic benefits of artemisia annua: A comprehensive overview of its medicinal properties.J. Pharm. Bioallied Sci.202416S4248S4253(Suppl. 5)10.4103/jpbs.jpbs_1250_2440061692
    [Google Scholar]
  9. CovelloP.S. TeohK.H. PolichukD.R. ReedD.W. NowakG. Functional genomics and the biosynthesis of artemisinin.Phytochemistry200768141864187110.1016/j.phytochem.2007.02.016 17399751
    [Google Scholar]
  10. OaksS.C. MitchellV.S. PearsonG.W. Carpenter, CCJ Parasite biology. Malaria: obstacles and opportunities.National Academies Press (US)1991
    [Google Scholar]
  11. SmithM.L. StyczynskiM.P. Systems biology-based investigation of host–plasmodium interactions.Trends Parasitol.201834761763210.1016/j.pt.2018.04.003 29779985
    [Google Scholar]
  12. CrutcherJ.M. HoffmanS.L. Malaria. Medical Microbiology.4th ed BaronS. Galveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  13. ChawlaJ. OberstallerJ. AdamsJ.H. Targeting gametocytes of the malaria parasite Plasmodium falciparum in a functional genomics era: Next steps.Pathogens202110334610.3390/pathogens10030346 33809464
    [Google Scholar]
  14. SalinasN.D. TangW.K. ToliaN.H. Blood-stage malaria parasite antigens: Structure, function, and vaccine potential.J. Mol. Biol.2019431214259428010.1016/j.jmb.2019.05.018 31103771
    [Google Scholar]
  15. SuX. ZhangC. JoyD.A. Host-malaria parasite interactions and impacts on mutual evolution.Front. Cell. Infect. Microbiol.20201058793310.3389/fcimb.2020.587933 33194831
    [Google Scholar]
  16. Helicobacter pylori (H. pylori) and cancer.Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet.2013
  17. The silent pandemic: How drug-resistant superbugs risk becoming the world’s number one killer.Available from: https://www.gavi.org/vaccineswork/silent-pandemic-how-drug-resistant-superbugs-risk-becoming-worlds-number-one-killer.2022
  18. MuteebG. RehmanM.T. ShahwanM. AatifM. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review.Pharmaceuticals20231611161510.3390/ph16111615 38004480
    [Google Scholar]
  19. LiJ. HuS. JianW. XieC. YangX. Plant antimicrobial peptides: Structures, functions, and applications.Bot. Stud.2021621510.1186/s40529‑021‑00312‑x 33914180
    [Google Scholar]
  20. NawrotR. BarylskiJ. NowickiG. BroniarczykJ. BuchwaldW. Goździcka-JózefiakA. Plant antimicrobial peptides.Folia Microbiol.201459318119610.1007/s12223‑013‑0280‑4 24092498
    [Google Scholar]
  21. DiniI. De BiasiM.G. MancusiA. An overview of the potentialities of antimicrobial peptides derived from natural sources.Antibiotics20221111148310.3390/antibiotics11111483 36358138
    [Google Scholar]
  22. TamJ. WangS. WongK. TanW. Antimicrobial peptides from plants.Pharmaceuticals20158471175710.3390/ph8040711 26580629
    [Google Scholar]
  23. ZhangQ.Y. YanZ.B. MengY.M. HongX.Y. ShaoG. MaJ.J. ChengX.R. LiuJ. KangJ. FuC.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential.Mil. Med. Res.2021814810.1186/s40779‑021‑00343‑2 34496967
    [Google Scholar]
  24. TalapkoJ. MeštrovićT. JuzbašićM. TomasM. ErićS. Horvat AleksijevićL. et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications.Antibiotics (Basel)202211101417
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266435068250902102329
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test