Skip to content
2000
Volume 25, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Artemisinin and its semisynthetic derivatives are a group of bioactive chemicals obtained mostly from the extracts of Artemisia species that exert a significant amount of antimalarial activity while remaining relatively safe and tolerable. However, their effectiveness is not limited to malaria; it extends to a variety of human infectious diseases. Mostly the mode of action includes the generation of free radicals by breaking the endoperoxide link in its molecular structure, which facilitates the eradication of microbial species. Artemisinins are found to inhibit bacterial, viral, protozoal, helminth, and fungal infections. Their derivatives, like artemisone, a reversible inhibitor, target the viral replication cycle, and artesunate suppresses EBV infection by inhibiting the production of early EBV proteins. They were also found to be highly effective against Helicobacter pylori and Mycobacterium tuberculosis by generating peroxides in a time and concentration-dependent way. Other derivatives, such as artesunate, artemether, and arteether, have also shown antimicrobial activity that can be administered orally, rectally, intramuscularly, or intravenously. This review aims to provide a complete update on the antimicrobial applications of Artemisinin and its semi-synthetic derivatives, as well as derived dimers/trimers. The paper reflects a significant potential for the discovery of novel Artemisinin medications that can be used as supplementary treatments for various diseases. However, further translational and experimental research is required for optimization and the establishment of pharmacokinetic profiles. In addition, health authorities are also required to regulate the present Artemisinins and newly discovered derivatives to ensure their long-term effectiveness in the worldwide fight against antibiotic resistance.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266343676250122062731
2025-02-27
2026-01-07
Loading full text...

Full text loading...

References

  1. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Al-OuqailiM.T.S. Chinedu IkemJ. Victor ChigozieU. SakiM. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.24655 35949048
    [Google Scholar]
  2. de MartelC. GeorgesD. BrayF. FerlayJ. CliffordG.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis.Lancet Glob. Health202082e180e19010.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  3. MalfertheinerP. CamargoM.C. El-OmarE. LiouJ.M. PeekR. SchulzC. SmithS.I. SuerbaumS. Helicobacter pylori infection.Nat. Rev. Dis. Primers2023911910.1038/s41572‑023‑00431‑8 37081005
    [Google Scholar]
  4. WallG. Lopez-RibotJ.L. Current antimycotics, new prospects, and future approaches to antifungal therapy.Antibiotics20209844510.3390/antibiotics9080445 32722455
    [Google Scholar]
  5. MacdonaldV. MbuagbawL. JordanM.R. MathersB. JayS. BaggaleyR. VersterA. BertagnolioS. Prevalence of pretreatment HIV drug resistance in key populations: A systematic review and meta‐analysis.J. Int. AIDS Soc.20202312e2565610.1002/jia2.25656 33369131
    [Google Scholar]
  6. KodgireS. ChandrashekharaiahP.S. SolankiJ. SanyalD. DasguptaS. Broad-spectrum antimicrobial activity of medicinal herbs: A potential solution towards microbial drug resistance.J. Med. Plants Stud.202311311310.22271/plants.2023.v11.i3a.1548
    [Google Scholar]
  7. UddinT.M. ChakrabortyA.J. KhusroA. ZidanB.M.R.M. MitraS. EmranT.B. DhamaK. RiponM.K.H. GajdácsM. SahibzadaM.U.K. HossainM.J. KoiralaN. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  8. Van VuurenS. HollD. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016.J. Ethnopharmacol.201720823625210.1016/j.jep.2017.07.011 28694104
    [Google Scholar]
  9. TanakaN. KashiwadaY. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies.J. Nat. Med.202175476278310.1007/s11418‑021‑01545‑7 34255289
    [Google Scholar]
  10. AlamgirA.N. Alamgir, AN Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P nlms; and O/N heterocycles. Therapeutic Use of Medicinal Plants and their Extracts.Springer2018165309
    [Google Scholar]
  11. HussainA. HayatM.Q. SahreenS. Pharmacological promises of genus Artemisia (Asteraceae): A review.Proc. Pak. Acad. Sci.2017544265287
    [Google Scholar]
  12. LeeB.J. WeyersM. HaynesR.K. van der KooyF. Discovery of artemisinin in Artemisia annua its current production, and relevance to sub-Saharan Africa.S. Afr. J. Bot.2023153212710.1016/j.sajb.2022.12.017
    [Google Scholar]
  13. SharmaK. Enhancement of anticancer potential of artemisinin derivatives through N-glycosylation.Curr. Top. Med. Chem.202424232074209110.2174/0115680266322676240724114536 39136507
    [Google Scholar]
  14. MoujirL. CalliesO. SousaP.M.C. SharopovF. SecaA.M.L. Applications of sesquiterpene lactones: A review of some potential success cases.Appl. Sci.2020109300110.3390/app10093001
    [Google Scholar]
  15. IbrahimA. BashirF. AliS. RehmanB. AinQ.T. Complementary and alternative medicine for the treatment of hepatitis C virus infection.Pharmacol. Commun.202331537110.55627/ppc.003.01.0291
    [Google Scholar]
  16. MalekmohammadK. Rafieian-KopaeiM. SardariS. SewellR.D.E. Effective antiviral medicinal plants and biological compounds against central nervous system infections: A mechanistic review.Curr. Drug Discov. Technol.202017446948310.2174/1570163816666190715114741 31309894
    [Google Scholar]
  17. Al-KhayriJ.M. SudheerW.N. LakshmaiahV.V. MukherjeeE. NizamA. ThiruvengadamM. NagellaP. AlessaF.M. Al-MssallemM.Q. RezkA.A. ShehataW.F. AttimaradM. Biotechnological approaches for production of artemisinin, an anti-malarial drug from Artemisia annua L.Molecules2022279304010.3390/molecules27093040 35566390
    [Google Scholar]
  18. Saeed-ur-Rahman KhalidM. KayaniS-I. JanF. UllahA. TangK. Biological activities of artemisinins beyond anti-malarial: A review.Trop. Plant Biol.201912423124310.1007/s12042‑019‑09228‑0
    [Google Scholar]
  19. (a) Oguri, H. Synthesis and structural diversification of artemisinins towards the generation of potent anti-malarial agents.Chem. Lett.2013505924937
    [Google Scholar]
  20. MartinoE. TarantinoM. BergaminiM. CastelluccioV. CoricelloA. FalcicchioM. LorussoE. CollinaS. Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria.Future Med. Chem.201911121443145910.4155/fmc‑2018‑0337 31298579
    [Google Scholar]
  21. PinheiroL.C.S. FeitosaL.M. SilveiraF.F.D. BoechatN. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives.An. Acad. Bras. Cienc.2018901 suppl 2)(Suppl. 21251127110.1590/0001‑376520182017083029873667
    [Google Scholar]
  22. AnibogwuR. JesusK.D. PradhanS. PashikantiS. MateenS. SharmaK. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review.Molecules20212622699510.3390/molecules26226995 34834086
    [Google Scholar]
  23. WoodleyC.M. AmadoP.S.M. CristianoM.L.S. O’NeillP.M. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies.Med. Res. Rev.20214163062309510.1002/med.21849 34355414
    [Google Scholar]
  24. WangF. XuS. ChenC. WeiC. ZhangC.J. Stereochemistry and antimalarial activity of C-10 carba analogues of artemisinin.Bioorg. Med. Chem. Lett.20239312941410.1016/j.bmcl.2023.129414 37494974
    [Google Scholar]
  25. PatelO.P.S. BeteckR.M. LegoabeL.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research.Eur. J. Med. Chem.202121311319310.1016/j.ejmech.2021.113193 33508479
    [Google Scholar]
  26. HaynesR.K. ChanH.W. CheungM.K. ChungS.T. LamW.L. TsangH.W. VoersteA. WilliamsI.D. Stereoselective preparation of 10α‐and 10β‐aryl derivatives of dihydroartemisinin.Eur. J. Org. Chem.20032003112098211410.1002/ejoc.200300064
    [Google Scholar]
  27. AksićJ. GenčićM. RadulovićN. Recent updates in the development of mettallocenes with antimalarial activity. FU.Phys. Chem. Tech.202118113710.2298/FUPCT2001001A
    [Google Scholar]
  28. WuY. ParapiniS. WilliamsI.D. MisianoP. WongH.N. TaramelliD. BasilicoN. HaynesR.K. Facile preparation of N-Glycosylated 10-piperazinyl artemisinin derivatives and evaluation of their antimalarial and cytotoxic activities.Molecules2018237171310.3390/molecules23071713 30011856
    [Google Scholar]
  29. LiY HuangH WuYL Qinghaosu (artemisinin): An antimalarial drug from China.Science20052284703104910.1126/science.3887571
    [Google Scholar]
  30. LuisiG. Antimalarial endoperoxides: from natural sesquiterpene drugs to a rising generation of synthetic congeners.Terpenes.2023215822710.2174/9789815123647123020007
    [Google Scholar]
  31. QuadrosH.C. HerrmannL. ManarancheJ. PaloqueL. Borges-SilvaM.C. DziwornuG.A. D’AlessandroS. ChibaleK. BasilicoN. Benoit-VicalF. TsogoevaS.B. MoreiraD.R.M. Characterization of antimalarial activity of artemisinin-based hybrid drugs.Antimicrob. Agents Chemother.2024687e00143e2410.1128/aac.00143‑24 38899927
    [Google Scholar]
  32. EzemaC.A. OkaguI.U. EzeorbaT.P.C. Escaping the enemy’s bullets: An update on how malaria parasites evade host immune response.Parasitol. Res.202312281715173110.1007/s00436‑023‑07868‑6 37219610
    [Google Scholar]
  33. MottB.T. TripathiA. SieglerM.A. MooreC.D. SullivanD.J. PosnerG.H. Synthesis and antimalarial efficacy of two-carbon-linked, artemisinin-derived trioxane dimers in combination with known antimalarial drugs.J. Med. Chem.20135662630264110.1021/jm400058j 23425037
    [Google Scholar]
  34. FröhlichT. Çapcı KaragözA. ReiterC. TsogoevaS.B. Artemisinin-derived dimers: Potent antimalarial and anticancer agents.J. Med. Chem.201659167360738810.1021/acs.jmedchem.5b01380 27010926
    [Google Scholar]
  35. TiwariM.K. ChaudharyS. Artemisinin‐derived antimalarial endoperoxides from bench‐side to bed‐side: Chronological advancements and future challenges.Med. Res. Rev.20204041220127510.1002/med.21657 31930540
    [Google Scholar]
  36. EkthawatchaiS. KamchonwongpaisanS. KongsaereeP. TarnchompooB. ThebtaranonthY. YuthavongY. C-16 artemisinin derivatives and their antimalarial and cytotoxic activities: Syntheses of artemisinin monomers, dimers, trimers, and tetramers by nucleophilic additions to artemisitene.J. Med. Chem.200144264688469510.1021/jm0103007 11741486
    [Google Scholar]
  37. ZhangN. YuZ. YangX. HuP. HeY. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.Eur. J. Med. Chem.201815082984010.1016/j.ejmech.2018.03.010 29597166
    [Google Scholar]
  38. Martinez-CorreaH.A. BitencourtR.G. KayanoA.C.A.V. MagalhãesP.M. CostaF.T.M. CabralF.A. Integrated extraction process to obtain bioactive extracts of Artemisia annua L. leaves using supercritical CO2, ethanol and water.Ind. Crops Prod.20179553554210.1016/j.indcrop.2016.11.007
    [Google Scholar]
  39. KamarajC. RagavendranC. KumarR.C.S. AliA. KhanS.U. MashwaniZ-R. Luna-AriasJ.P. PedrozaJ.P.R. Antiparasitic potential of asteraceae plants: A comprehensive review on therapeutic and mechanistic aspects for biocompatible drug discovery.Phytomedicine Plus.20222410037710.1016/j.phyplu.2022.100377
    [Google Scholar]
  40. AlbaqamiJ.J. BennyT.P. HamdiH. AltemimiA.B. KuttithodiA.M. JobJ.T. SasidharanA. NarayanankuttyA. Phytochemical composition and in vitro antioxidant, anti-inflammatory, anticancer, and enzyme-inhibitory activities of Artemisia nilagirica (CB Clarke) Pamp.Molecules20222720711910.3390/molecules27207119 36296712
    [Google Scholar]
  41. DograS. KoulB. SinghJ. MishraM. YadavD. Phytochemical analysis, antimicrobial screening and in vitro pharmacological activity of Artemisia vestita leaf extract.Molecules2024298182910.3390/molecules29081829 38675649
    [Google Scholar]
  42. MsaadaK. SalemN. BachrouchO. BousselmiS. TammarS. AlfaifyA. Al SaneK. Ben AmmarW. AzeizS. Haj BrahimA. HammamiM. Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics.J. Chem.201520151804658
    [Google Scholar]
  43. IvănescuB. BurlecA.F. CrivoiF. RoșuC. CorciovăA. Secondary metabolites from Artemisia genus as biopesticides and innovative nano-based application strategies.Molecules20212610306110.3390/molecules26103061 34065533
    [Google Scholar]
  44. Sharifi-RadJ. Herrera-BravoJ. SemwalP. PainuliS. BadoniH. EzzatS.M. FaridM.M. MerghanyR.M. AborehabN.M. SalemM.A. SenS. AcharyaK. LapavaN. MartorellM. TynybekovB. CalinaD. ChoW.C. Artemisia spp.: An update on its chemical composition, pharmacological and toxicological profiles.Oxid. Med. Cell. Longev.20222022112310.1155/2022/5628601 36105486
    [Google Scholar]
  45. TarikuY. HymeteA. HailuA. RohloffJ. Essential-oil composition, antileishmanial, and toxicity study of Artemisia abyssinica and Satureja punctata ssp. punctata from Ethiopia.Chem. Biodivers.2010741009101810.1002/cbdv.200900375 20397218
    [Google Scholar]
  46. TaljaardL. ProbstA. TornowR. KeiserJ. HaynesR.K. van der KooyF. In vitro antischistosomal activity of Artemisia annua and Artemisia afra extracts.Phytomedicine Plus.20222310027910.1016/j.phyplu.2022.100279
    [Google Scholar]
  47. MojarrabM. ShiravandA. DelazarA. Heshmati AfsharF. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts.Scientific. World. J.201420141825370 24558335
    [Google Scholar]
  48. Higuera-PiedrahitaR.I. Dolores-HernándezM. Jiménez-PérezL.G. Camacho-EnríquezB.C. ZamilpaA. López-ArellanoR. Mendoza-de-GivesP. Cuéllar-OrdazJ.A. López-ArellanoM.E. In vitro nematocidal effect and anthelmintic activity of Artemisia cina against haemonchus contortus in gerbils and relative expression of Hc29 gene in transitional larvae (L3–L4).Acta Parasitol.202166393894610.1007/s11686‑021‑00364‑w 33721186
    [Google Scholar]
  49. TaherkhaniM. Chemical constituents, antimicrobial, cytotoxicity, mutagenic and antimutagenic effects of Artemisia ciniformis.Iran. J. Pharm. Res.2016153471481 27980582
    [Google Scholar]
  50. Gálvez RomeroJ.L. Parada SosaC.M. BurgoaG.L. Lorenzo LealA.C. El KassisE.G. Bautista RodríguezE. Paredes JuárezG.A. HernándezL.R. BachH. JuárezZ.N. Antimycobacterial, cytotoxic, and anti-inflammatory activities of Artemisia ludoviciana.J. Ethnopharmacol.202229311524910.1016/j.jep.2022.115249 35395382
    [Google Scholar]
  51. RashidS. RatherM.A. ShahW.A. BhatB.A. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of aArtemisia indica willd.Food Chem.2013138169370010.1016/j.foodchem.2012.10.102 23265542
    [Google Scholar]
  52. MohantyB. PuriS. KesavanV. A review on therapeutic potential of Artemisia nilagirica.J. Plant Biochem. Physiol.201861210.4172/2329‑9029.1000205
    [Google Scholar]
  53. DingJ. WangL. HeC. ZhaoJ. SiL. HuangH. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects.J. Ethnopharmacol.202127311396010.1016/j.jep.2021.113960 33636317
    [Google Scholar]
  54. BoukhennoufaA. BenmaghniaS. MaiziY. TouilA.M. MeddahB. Antifungal and antioxidant activities of Artemisia herba-alba Asso.Eur. J. Biol. Res.2021114493500
    [Google Scholar]
  55. FattahianM. GhanadianM. ZolfaghariB. AbdeyazdanS. SaberiS. ZulfiqarF. KhanI.A. AliZ. Phytochemical study of Seriphidium khorassanicum (syn. Artemisia khorassanica) aerial parts: Sesquiterpene lactones with anti-protozoal activity.Nat. Prod. Res.2024381162710.1080/14786419.2022.2102630 35856479
    [Google Scholar]
  56. Esavand HeydariF. GhaffarifarF. SoflaeiS. DalimiA. Comparison between in vitro effects of aqueous extract of Artemisia seiberi and artemisinin on Leishmania major.Jundishapur J. Nat. Pharm. Prod.201382707510.17795/jjnpp‑9513 24624191
    [Google Scholar]
  57. TaherkhaniM. Tyrosinase inhibition, in vitro antimicrobial, antioxidant, cytotoxicity and anticancer activities of the essential oil from the leaves of Artemisia turanica growing wild in Iran.J. Essent. Oil-Bear. Plants20161951141115410.1080/0972060X.2016.1141066
    [Google Scholar]
  58. AlouiZ. MessaoudC. HaouesM. NeffatiN. Bassoumi JamoussiI. Essafi-BenkhadirK. BoussaidM. GuizaniI. KarouiH. Asteraceae Artemisia campestris and Artemisia herba-alba essential oils trigger apoptosis and cell cycle arrest in Leishmania infantum promastigotes.Evid. Based Complement. Alternat. Med.201620161914709610.1155/2016/9147096 27807464
    [Google Scholar]
  59. MoreG. LallN. HusseinA. TshikalangeT.E. Antimicrobial constituents of Artemisia afra. Jacq. ex Willd. against periodontal pathogens.Evid. Based Complement. Alternat. Med.201220121252758 22693528
    [Google Scholar]
  60. NikolovaM. LyubenovaA. Yankova-TsvetkovaE. GeorgievB. BerkovS. AnevaI. TrendafilovaA. Artemisia santonicum L. and Artemisia lerchiana Web. essential oils and exudates as sources of compounds with pesticidal action.Plants20231219349110.3390/plants12193491 37836231
    [Google Scholar]
  61. HolandaV.N. BritoT.G.S. OliveiraJ.R.S. CunhaR.X. SilvaA.P.S. SilvaW.V. AraújoT.F.S. TavaresJ.F. SantosS.G. FigueiredoR.C.B.Q. LimaV.L.M. Potential effects of essential oil from Plinia cauliflora (Mart.) kausel on Leishmania: In vivo, in vitro, and in silico approaches.Microorganisms202412120710.3390/microorganisms12010207 38276192
    [Google Scholar]
  62. SureshJ. ReddyS.V. AhujaJ. SebastianM. RajanS.K. Antioxidant and antimicrobial activity of Artemisia pallen. IJPI’S J.Pharmacogn Herb. Form.201112
    [Google Scholar]
  63. El-AmierY.A. Al BorkiA.E. ElagamiS.A. Potential of wild plant Artemisia judaica L. as sustainable source of antioxidant and antimicrobial compounds.J. Exp. Sci.201910148
    [Google Scholar]
  64. ShokoT. ManhiviV.E. MtlhakoM. SivakumarD. Changes in functional compounds, volatiles, and antioxidant properties of culinary herb coriander leaves (Coriandrum sativum) stored under red and blue LED light for different storage times.Front. Nutr.2022985648410.3389/fnut.2022.856484 35634386
    [Google Scholar]
  65. NigamM. AtanassovaM. MishraA.P. PezzaniR. DevkotaH.P. PlygunS. SalehiB. SetzerW.N. Sharifi-RadJ. Bioactive compounds and health benefits of Artemisia species.Nat. Prod. Commun.201914710.1177/1934578X19850354
    [Google Scholar]
  66. ReznicekG. YAVAŞOĞLUN.U. ŞenolS.G. KonyalioğluS ZeybekA.U. Antimicrobial and antioxidant properties of Artemisia L. species from western Anatolia.Turk. J. Biol.20123617584
    [Google Scholar]
  67. GarcíaS. AlarcónG. RodríguezC. HerediaN. Extracts of Acacia farnesiana and Artemisia ludoviciana inhibit growth, enterotoxin production and adhesion of Vibrio cholerae.World J. Microbiol. Biotechnol.200622766967410.1007/s11274‑005‑9087‑z
    [Google Scholar]
  68. UmamK. FengC.S. YangG. TuP.C. LinC.Y. YangM.T. KuoT.F. YangW.C. Tran Nguyen MinhH. Phytochemistry, pharmacology and mode of action of the anti-bacterial artemisia plants.Bioengineering202310663310.3390/bioengineering10060633 37370564
    [Google Scholar]
  69. AhameethunisaA.R. HopperW. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria.BMC Complement. Altern. Med.2010101610.1186/1472‑6882‑10‑6 20109237
    [Google Scholar]
  70. EkiertH. PajorJ. KlinP. RzepielaA. ŚlesakH. SzopaA. Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies.Molecules20202519441510.3390/molecules25194415 32992959
    [Google Scholar]
  71. TasdemirD. TierneyM. SenR. BergonziM. DemirciB. BiliaA. BaserK. BrunR. ChatterjeeM. Antiprotozoal effect of Artemisia indica extracts and essential oil.Planta Med.20158112/131029103710.1055/s‑0035‑1546125 26085047
    [Google Scholar]
  72. NezamabadiV. AkhgarM.R. TahamipourB. RajaeiP. Biosynthesis and antibacterial activity of ZnO nanoparticles by Artemisia aucheri extract.Iran. J. Biotechnol.2020182e2426 33542941
    [Google Scholar]
  73. KordaliS. KotanR. MaviA. CakirA. AlaA. YildirimA. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils.J. Agric. Food Chem.200553249452945810.1021/jf0516538 16302761
    [Google Scholar]
  74. Younessi-HamzekhanluM. SanjariS. DejahangA. KarkajE.S. NojadehM.S. GönençT.M. OzturkM. Evaluation of essential oil from different Artemisia fragrans willd. Populations: chemical composition, antioxidant, and antibacterial activity.J. Essent. Oil-Bear. Plants20202361218123610.1080/0972060X.2020.1854129
    [Google Scholar]
  75. HuangX. LiuT. ZhouC. HuangY. LiuX. YuanH. Antifungal activity of essential oils from three Artemisia species against Colletotrichum gloeosporioides of mango.Antibiotics20211011133110.3390/antibiotics10111331 34827269
    [Google Scholar]
  76. DasS. Vörös-HorváthB. BencsikT. MicalizziG. MondelloL. HorváthG. KőszegiT. SzéchenyiA. Antimicrobial activity of different Artemisia essential oil formulations.Molecules20202510239010.3390/molecules25102390 32455592
    [Google Scholar]
  77. Palacios-EspinosaJ.F. Núñez-AragónP.N. Gomez-ChangE. LinaresE. ByeR. RomeroI. Anti-Helicobacter pylori activity of Artemisia ludoviciana subsp. mexicana and two of its bioactive components, Estafiatin and Eupatilin.Molecules20212612365410.3390/molecules26123654 34203927
    [Google Scholar]
  78. SureshJ. MaheshN.M. AhujaJ. SantilnaK.S. Review on Artemisia nilagirica (Clarke) pamp.J. Biol. Active Prod. Nature2011129710410.1080/22311866.2011.10719075
    [Google Scholar]
  79. ParameswariP. DevikaR. VijayaraghavanP. in vitro anti-inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke).Pamp. Saudi J. Biol. Sci.201926346046310.1016/j.sjbs.2018.09.005 30899158
    [Google Scholar]
  80. JyotiM.A. NamK.W. JangW.S. KimY.H. KimS.K. LeeB.E. SongH.Y. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis.J. Infect. Chemother.201622420020810.1016/j.jiac.2015.11.014 26867795
    [Google Scholar]
  81. VoskuilM.I. BartekI.L. ViscontiK. SchoolnikG.K. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species.Front. Microbiol.2011210510.3389/fmicb.2011.00105 21734908
    [Google Scholar]
  82. ChoiW. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents.J. Clin. Med.2017633010.3390/jcm6030030 28287416
    [Google Scholar]
  83. AnQ. LiC. ChenY. DengY. YangT. LuoY. Repurposed drug candidates for antituberculosis therapy.Eur. J. Med. Chem.202019211217510.1016/j.ejmech.2020.112175 32126450
    [Google Scholar]
  84. PellicerJ. Saslis-LagoudakisC.H. CarrióE. ErnstM. GarnatjeT. GraceO.M. GrasA. MumbrúM. VallèsJ. VitalesD. RønstedN. A phylogenetic road map to antimalarial Artemisia species.J. Ethnopharmacol.20182251910.1016/j.jep.2018.06.030 29936053
    [Google Scholar]
  85. BishtD. KumarD. KumarD. DuaK. ChellappanD.K. Phytochemistry and pharmacological activity of the genus artemisia.Arch. Pharm. Res.202144543947410.1007/s12272‑021‑01328‑4 33893998
    [Google Scholar]
  86. NamuliA. BaziraJ. CasimT.U. EngeuP.O. A review of various efforts to increase artemisinin and other antimalarial compounds in Artemisia Annua L plant.Cogent Biol.201841151331210.1080/23312025.2018.1513312
    [Google Scholar]
  87. AfsharF.H. DelazarA. JannehO. NazemiyehH. PasdaranA. NaharL. SarkerS.D. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae.Rev. Bras. Farmacogn.201121698699010.1590/S0102‑695X2011005000144
    [Google Scholar]
  88. QiuF. LiuJ. MoX. LiuH. ChenY. DaiZ. Immunoregulation by artemisinin and its derivatives: A new role for old antimalarial drugs.Front. Immunol.20211275177210.3389/fimmu.2021.751772 34567013
    [Google Scholar]
  89. AryaA. Kojom FokoL.P. ChaudhryS. SharmaA. SinghV. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions – India and sub-Saharan Africa.Int. J. Parasitol. Drugs Drug Resist.202115435610.1016/j.ijpddr.2020.11.006 33556786
    [Google Scholar]
  90. TaljaardL. HaynesR.K. van der KooyF. Artemisia species and their active constituents for treating schistosomiasis.Rev. Bras. Farmacogn.202333587588510.1007/s43450‑023‑00407‑5
    [Google Scholar]
  91. KshirsagarS.G. RaoR.V. Antiviral and immunomodulation effects of Artemisia.Medicina (Kaunas)202157321710.3390/medicina57030217 33673527
    [Google Scholar]
  92. OroscoF.L. Current advances in antiviral potential of artemisia against major viral infections.J. Bacteriol. Virol.2023532617310.4167/jbv.2023.53.2.061
    [Google Scholar]
  93. HussainA. A phylogenetic perspective of antiviral species of the genus Artemisia (Asteraceae-Anthemideae): A proposal of anti SARS-CoV-2 (COVID-19) candidate taxa.J. Herb. Med.20223610060110.1016/j.hermed.2022.100601 36188629
    [Google Scholar]
  94. XiaoJ. LiuP. HuY. LiuT. GuoY. SunP. ZhengJ. RenZ. WangY. Antiviral activities of Artemisia vulgaris L. extract against herpes simplex virus.Chin. Med.20231812110.1186/s13020‑023‑00711‑1 36855145
    [Google Scholar]
  95. NieC. TrimpertJ. MoonS. HaagR. GilmoreK. KauferB.B. SeebergerP.H. in vitro efficacy of Artemisia extracts against SARS-CoV-2.Virol. J.202118118210.1186/s12985‑021‑01651‑8 34496903
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266343676250122062731
Loading
/content/journals/ctmc/10.2174/0115680266343676250122062731
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antibacterial; antibiotic resistance; antifungal; antimicrobial; antiviral; Artemisinin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test