Skip to content
2000
Volume 25, Issue 21
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Existing research has suggested that the JNK/AP-1/NF-κB/Caspase-1 pathway may account for the activation of HMC-1 mast cells under inflammatory circumstances, and our current study aims to validate whether Tomatidine could act as the candidate to modulate this pathway in Allergic Rhinitis (AR).

Objective

This study aimed to characterize the effect of Tomatidine on inflammation in C48/80-activated HMC-1 cells and to explore the underlying mechanisms involved.

Methods

The inflammation in HMC-1 cells was triggered C48/80 induction to mimic the AR, and the effects of Tomatidine on the viability of HMC-1 cells were tested using the Cell Counting Kit-8 assay. Thereafter, the concentrations of inflammation-related cytokines, Interleukin-1β, tumor necrosis factor-α, as well as the histamine and β-hexosaminidase, were quantified by enzyme-linked immunosorbent assay. The activation status of the JNK/AP-1/NF-κB/Caspase-1 pathway in HMC-1 cells following C48/80 and/or Tomatidine intervention was determined based on immunoblotting assay.

Results

The viability was elevated in HMC-1 cells following C48/80-induced activation, and the concentration of inflammation-related cytokines and mediators was increased as well. Meanwhile, the protein levels of active Caspase-1 and the phosphorylation of JNK/AP-1/NF-κB/Caspase-1 pathway-related proteins were also observed in HMC-1 cells after the treatment of C48/80. On the contrary, Tomatidine intervention suppressed the viability and the concentration of inflammation-related cytokines and mediators of modeled HMC-1 cells and led to the inactivation of the JNK/AP-1/NF-κB/Caspase-1 pathway in modeled HMC-1 cells.

Conclusion

Our study demonstrates that Tomatidine can attenuate C48/80-induced inflammatory responses in HMC-1 cells , potentially through modulation of the JNK/AP-1/NF-κB/Caspase-1 signaling pathway. These findings provide preliminary evidence supporting Tomatidine as a candidate for further investigation in allergic inflammation.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266392868250527045507
2025-05-27
2025-11-09
Loading full text...

Full text loading...

References

  1. CzechE.J. OverholserA. SchultzP. Allergic rhinitis.Prim. Care202350215917810.1016/j.pop.2023.01.003 37105599
    [Google Scholar]
  2. BernsteinJ.A. BernsteinJ.S. MakolR. WardS. Allergic rhinitis.JAMA20243311086687710.1001/jama.2024.0530 38470381
    [Google Scholar]
  3. JiaQ. LiuZ. WangC. YangB. ZhangX. ShanC. WangJ. Protective effect of platycodin d on allergic rhinitis in mice through dpp4/jak2/stat3 pathway inhibition.Curr. Mol. Pharmacol.2025171876142934531010.2174/0118761429345310241211105707 39773045
    [Google Scholar]
  4. ToscaM.A. TrinciantiC. NasoM. NosratianV. CiprandiG. Treatment of allergic rhinitis in clinical practice.Curr. Pediatr. Rev.202420327127710.2174/1573396320666230912103108 37702169
    [Google Scholar]
  5. ChoiS JungMA. HwangYH. PyunBJ. LeeJY. JungDH. Anti-allergic effects of asarum heterotropoides on an ovalbumin-induced allergic rhinitis murine model.Biomedicine Pharmacotherapy202114111194410.1016/j.biopha.2021.111944
    [Google Scholar]
  6. ZhangZ. ErnstP.B. KiyonoH. KurashimaY. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases.Front. Immunol.20221393712010.3389/fimmu.2022.937120 36189267
    [Google Scholar]
  7. KolkhirP. Elieh-Ali-KomiD. MetzM. SiebenhaarF. MaurerM. Understanding human mast cells: Lesson from therapies for allergic and non-allergic diseases.Nat. Rev. Immunol.202222529430810.1038/s41577‑021‑00622‑y 34611316
    [Google Scholar]
  8. Elieh Ali KomiD. WöhrlS. BieloryL. Mast cell biology at molecular level: A comprehensive review.Clin. Rev. Allergy Immunol.202058334236510.1007/s12016‑019‑08769‑2 31828527
    [Google Scholar]
  9. Bayar MulukN. BafaqeehS.A. CingiC. Anti-IgE treatment in allergic rhinitis.Int. J. Pediatr. Otorhinolaryngol.201912710967410.1016/j.ijporl.2019.109674 31526939
    [Google Scholar]
  10. KimH.Y. KangH.G. ChoiY.J. KimH.M. JeongH.J. Caudatin attenuates inflammatory reaction by suppressing JNK/AP-1/NF-κB/caspase-1 pathways in activated HMC-1 cells.Food Sci. Biotechnol.20233281101110910.1007/s10068‑023‑01251‑y 36683865
    [Google Scholar]
  11. RezaeiS. MeftahH.S. EbtehajpourY. RahimiH.R. ChamaniJ. Investigation on the effect of fluorescence quenching of calf thymus dna by piperine: Caspase activation in the human breast cancer cell line studies.DNA Cell Biol.2024431263810.1089/dna.2023.0269 38079271
    [Google Scholar]
  12. LiuT. ZhangR. JiangL. ZhouL. ZhangH. LiangF. XiongP. ChenH. WenT. ShenX. XieC. TianL. The potential application and molecular mechanisms of natural products in the treatment of allergic rhinitis: A review.Phytomedicine202412915566310.1016/j.phymed.2024.155663 38759345
    [Google Scholar]
  13. KulkaM. The potential of natural products as effective treatments for allergic inflammation: Implications for allergic rhinitis.Curr. Top. Med. Chem.20099171611162410.2174/156802609789941898 19903159
    [Google Scholar]
  14. SongS.E. ShinS.K. ChoH.W. ImS.S. BaeJ.H. WooS.M. KwonT.K. SongD.K. Tomatidine inhibits tumor necrosis factor-α-induced apoptosis in C2C12 myoblasts via ameliorating endoplasmic reticulum stress.Mol. Cell. Biochem.20184441-2172510.1007/s11010‑017‑3226‑3 29196971
    [Google Scholar]
  15. Diosa-ToroM. TroostB. van de PolD. HeberleA.M. Urcuqui-InchimaS. ThedieckK. SmitJ.M. Tomatidine, a novel antiviral compound towards dengue virus.Antiviral Res.2019161909910.1016/j.antiviral.2018.11.011 30468746
    [Google Scholar]
  16. TroostB. MulderL.M. Diosa-ToroM. van de PolD. Rodenhuis-ZybertI.A. SmitJ.M. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro.Sci. Rep.2020101636410.1038/s41598‑020‑63397‑7 32286447
    [Google Scholar]
  17. HuangW.C. WuS.J. ChenY.L. LinC.F. LiouC.J. Tomatidine improves pulmonary inflammation in mice with acute lung injury.Mediators Inflamm.2021202111110.1155/2021/4544294 34531702
    [Google Scholar]
  18. XuB. HuangM. QiH. XuH. CaiL. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways.Mol. Genet. Genomics202429911410.1007/s00438‑024‑02109‑6 38400847
    [Google Scholar]
  19. KuoC.Y. HuangW.C. LiouC.J. ChenL.C. ShenJ.J. KuoM.L. Tomatidine attenuates airway hyperresponsiveness and inflammation by suppressing th2 cytokines in a mouse model of asthma.Mediators Inflamm.201720171910.1155/2017/5261803 29386751
    [Google Scholar]
  20. LiH. ZhangH. ZhaoH. Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4 / MyD88 / NF‐κB signaling pathway.Environ. Toxicol.202338225326510.1002/tox.23699 36350155
    [Google Scholar]
  21. ZengQ. FengK. YuY. LvY. Hsa_Circ_0000021 Sponges miR-3940-3p/KPNA2 Expression to Promote Cervical Cancer Progression.Curr. Mol. Pharmacol.20231717022321377510.2174/1874467216666230217151946 36799424
    [Google Scholar]
  22. HuL. ZhangJ. ShaoH. Research progress on quantification methods of drug concentration of monoclonal antibodies.Curr. Pharm. Anal.202218766367610.2174/1573412918666220329110712
    [Google Scholar]
  23. ZhangL. YangH. LiuJ. WangK. CaiX. XiaoW. WangL. WangM. ZhangC. ZhangJ. Metabolomics-based approach to analyze the therapeutic targets and metabolites of a synovitis ointment for knee osteoarthritis.Curr. Pharm. Anal.202319322223410.2174/1573412919666221223152915
    [Google Scholar]
  24. VoT.S. Natural products targeting FcεRI receptor for anti‐allergic therapeutics.J. Food Biochem.20204481333510.1111/jfbc.13335 32588463
    [Google Scholar]
  25. WaltzT.B. FivensonE.M. MorevatiM. LiC. BeckerK.G. BohrV.A. FangE.F. Sarcopenia, aging and prospective interventional strategies.Curr. Med. Chem.201925405588559610.2174/0929867324666170801095850 28762310
    [Google Scholar]
  26. JiangQ.W. ChenM.W. ChengK.J. YuP.Z. WeiX. ShiZ. Therapeutic potential of steroidal alkaloids in cancer and other diseases.Med. Res. Rev.201636111914310.1002/med.21346 25820039
    [Google Scholar]
  27. WangG. ChengN. Paeoniflorin inhibits mast cell-mediated allergic inflammation in allergic rhinitis.J. Cell. Biochem.2018119108636864210.1002/jcb.27135 30076630
    [Google Scholar]
  28. WangH.R. WeiS.Z. SongX.Y. WangY. ZhangW.B. RenC. MouY.K. SongX.C. IL-1β and allergy: Focusing on its role in allergic rhinitis.Mediators Inflamm.2023202311110.1155/2023/1265449 37091903
    [Google Scholar]
  29. NguyenS.M.T. RupprechtC.P. HaqueA. PattanaikD. YusinJ. KrishnaswamyG. Mechanisms governing anaphylaxis: Inflammatory cells, mediators, endothelial gap junctions and beyond.Int. J. Mol. Sci.20212215778510.3390/ijms22157785 34360549
    [Google Scholar]
  30. IwasakiM. SaitoK. TakemuraM. SekikawaK. FujiiH. YamadaY. WadaH. MizutaK. SeishimaM. ItoY. TNF-α contributes to the development of allergic rhinitis in mice.J. Allergy Clin. Immunol.2003112113414010.1067/mai.2003.1554 12847490
    [Google Scholar]
  31. Won JungH. JungJ.K. Weon ChoC. KangJ.S. ParkY.K. Antiallergic effect of KOB03, a polyherbal medicine, on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse and human mast cells.J. Ethnopharmacol.2012142368469310.1016/j.jep.2012.05.039 22687252
    [Google Scholar]
  32. AbdulaalW.H. OmarU.M. ZeyadiM. El-AgamyD.S. AlhakamyN.A. IbrahimS.R.M. AlmalkiN.A.R. AsfourH.Z. Al-RabiaM.W. MohamedG.A. ElshalM. Modulation of the crosstalk between Keap1/Nrf2/HO-1 and NF-κB signaling pathways by Tomatidine protects against inflammation/oxidative stress-driven fulminant hepatic failure in mice.Int. Immunopharmacol.202413011173210.1016/j.intimp.2024.111732 38402834
    [Google Scholar]
  33. YuX. ZhouJ. ZhaoF. LiuX. MaoY. DiaoL. WenC. LiuM. Tomatidine Suppresses the Destructive Behaviors of Fibroblast-Like Synoviocytes and Ameliorates Type II Collagen-Induced Arthritis in Rats.Front. Pharmacol.20211267070710.3389/fphar.2021.670707 34512321
    [Google Scholar]
  34. LiebermanP. The basics of histamine biology.Ann. Allergy Asthma Immunol.20111062S2S510.1016/j.anai.2010.08.005 21277530
    [Google Scholar]
  35. SteelantB. SeysS.F. Van GervenL. Van WoenselM. FarréR. WawrzyniakP. Kortekaas KrohnI. BullensD.M. TalaveraK. RaapU. BoonL. AkdisC.A. BoeckxstaensG. CeuppensJ.L. HellingsP.W. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis.J. Allergy Clin. Immunol.20181413951963.e810.1016/j.jaci.2017.08.039 29074456
    [Google Scholar]
  36. FukuishiN MurakamiS OhnoA YamanakaN MatsuiN FukutsujiK Does β-hexosaminidase function only as a degranulation indicator in mast cells? The primary role of β-hexosaminidase in mast cell granules.J. Immunol.201419341886189410.4049/jimmunol.1302520
    [Google Scholar]
  37. KangB.C. KimM.J. LeeS. ChoiY.A. ParkP.H. ShinT.Y. KwonT.K. KhangD. KimS.H. Nothofagin suppresses mast cell-mediated allergic inflammation.Chem. Biol. Interact.20192981710.1016/j.cbi.2018.10.025 30392763
    [Google Scholar]
  38. KimH.I. HongS.H. KuJ.M. KangS. KimT.Y. ShinY.C. KoS.G. Tonggyu-tang, a traditional Korean medicine, suppresses pro-inflammatory cytokine production through inhibition of MAPK and NF-κB activation in human mast cells and keratinocytes.BMC Complement. Altern. Med.201717118610.1186/s12906‑017‑1704‑5 28359265
    [Google Scholar]
  39. ZhuY. LiuC. WangY. XuJ. MaJ. ZhangH. ZhangP. ZhangD. XiaL. SongH. HuoX. Mechanistic insights into traditional Chinese medicine for digestive tract cancers: Implications for gastric, hepatic, esophageal, intestinal, and pancreatic tumors.Oncologie202426691392710.1515/oncologie‑2024‑0340
    [Google Scholar]
  40. PhullA.R. ArainS.Q. MajidA. FatimaH. AhmedM. KimS.J. Oxidative stress-mediated epigenetic remodeling, metastatic progression and cell signaling in cancer.Oncologie202426449350710.1515/oncologie‑2024‑0157
    [Google Scholar]
  41. ParkS.H. ParkY.J. KimK.Y. KimJ.S. Guaijaverin and epigallocatechin gallate exerts antiinflammatory and antiallergenic effects through interleukin-12 production.J. Med. Food202427111050106110.1089/jmf.2024.k.0183 39229731
    [Google Scholar]
  42. ImY.S. LeeB. KimE.Y. MinJ.H. SongD.U. LimJ.M. EomJ.W. ChoH.J. SohnY. JungH.S. Antiallergic effect of Gami-hyunggyeyeongyotang on ovalbumin-induced allergic rhinitis in mouse and human mast cells.J. Chin. Med. Assoc.201679418519410.1016/j.jcma.2015.08.012 26852212
    [Google Scholar]
  43. KimJ. WoolridgeS. BiffiR. BorghiE. LassakA. FerranteP. AminiS. KhaliliK. SafakM. Members of the AP-1 family, c-Jun and c-Fos, functionally interact with JC virus early regulatory protein large T antigen.J. Virol.20037795241525210.1128/JVI.77.9.5241‑5252.2003 12692226
    [Google Scholar]
  44. MacNeilA.J. JunkinsR.D. WuZ. LinT.J. Stem cell factor induces AP-1-dependent mast cell IL-6 production via MAPK kinase 3 activity.J. Leukoc. Biol.201495690391510.1189/jlb.0713401 24453276
    [Google Scholar]
  45. JeonS. KimM.M. Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK.Chem. Biol. Interact.201931310882610.1016/j.cbi.2019.108826 31545954
    [Google Scholar]
  46. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus dna with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266392868250527045507
Loading
/content/journals/ctmc/10.2174/0115680266392868250527045507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test