Skip to content
2000
Volume 25, Issue 21
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Osteoporosis is a deteriorating skeletal bone disorder that affects in a silent, asymptomatic way. On-demand for new therapeutic strategies, natural products have gained attention as a significant alternative for treating osteoporosis. 7-Hydroxyflavone (7HF) is one of the well-known natural flavones for its anti-inflammatory, anti-oxidant, anti-diabetic, and neuroprotective, which was investigated at the molecular level for restoring bone homeostasis against dexamethasone-induced osteoporosis with a focus on modulation of oxidative stress (caspase-3), GATA-3, and NF-kB signaling along with ADMET analysis.

Methods

Adult male rats were divided into four groups, containing six in each group. I- Control, II- Dexamethasone (Dexa)-treated disease control, III & IV – 7HF treated group (50, 100mg/kg). Animals in all groups, except the control, were injected with dexamethasone sodium phosphate at the dose level of 7mg/kg, intramuscularly, once a week for five weeks. The third and fourth group animals received 7HF-1 and 7HF-2 as a fine suspension with 2% carboxy methyl cellulose at a dose of 50 and 100mg/kg, respectively, by oral route once daily, starting from the second week of dexamethasone treatment. At the end of the 5th week, blood was collected from the femoral vein after anaesthesia, and the femur bones were dissected. Histopathology, immunohistochemistry of bone, biochemical serum analysis for ALP, TRAP 5b, RANKL, OPG, antioxidants and cytokines, as well as protein expression for RunX2, Bcl2 and Bax were performed. In addition, an analysis of absorption, distribution, metabolism, excretion, and toxicity (ADMET) was conducted for 7HF.

Results

Immunohistochemistry of GATA-3, NF-kB, and caspase-3 on femur bone sections evidenced the suppression of dexamethasone-induced osteoporosis by 7HF. It was found that 7HF lowered the serum levels of cytokines, ALP, TRAP 5b, and RANKL. 7HF elevated the serum level of antioxidants and OPG. In addition, the protein expression of RunX2, and anti-apoptotic Bcl2 was elevated, and the level of pro-apoptotic Bax in rat femur bone tissues was reduced through the use of 7HF. The aforementioned effects of 7HF were more prominent at the dose of 100mg/kg (p<0.001). 7HF exhibited good solubility and efficient absorption in the human intestine, though it showed limited permeability in MDCK cells. It demonstrated positive BBB permeability and Caco-2 permeability values. 7HF interacted with P-glycoprotein, had an optimal VD, high PPB, and was a substrate and inhibitor of CYP450 enzymes. It functioned effectively as a hERG blocker without inducing human hepatotoxicity. Comprehensive toxicity assessments highlight 7HF as a more suitable option for drug development.

Conclusion

The study data confirmed that concurrent treatment of 7HF showed evident effects in the protection against dexamethasone-induced osteoporosis through the modulation of the GATA-3/Caspase-3/NF-KB pathway. Collectively, the ADMET analysis suggests that 7HF possesses promising pharmacokinetic and toxicological attributes, making it a viable candidate for drug development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266387622250519052501
2025-05-22
2025-12-27
Loading full text...

Full text loading...

References

  1. CottsK.G. CifuA.S. Treatment of osteoporosis.JAMA2018319101040104110.1001/jama.2017.21995 29536084
    [Google Scholar]
  2. KimballJ.S. JohnsonJ.P. CarlsonD.A. Oxidative stress and Osteoporosis.J. Bone Joint Surg. Am.2021103151451146110.2106/JBJS.20.00989 34014853
    [Google Scholar]
  3. AdejuyigbeB. KalliniJ. ChiouD. KalliniJ.R. Osteoporosis: Molecular pathology, diagnostics, and therapeutics.Int. J. Mol. Sci.202324191458310.3390/ijms241914583 37834025
    [Google Scholar]
  4. NiedźwiedzkiT. FilipowskaJ. Bone remodeling in the context of cellular and systemic regulation: The role of osteocytes and the nervous system.J. Mol. Endocrinol.2015552R23R3610.1530/JME‑15‑0067 26307562
    [Google Scholar]
  5. SinderB.P. PettitA.R. McCauleyL.K. Macrophages: Their emerging roles in bone.J. Bone Miner. Res.201530122140214910.1002/jbmr.2735 26531055
    [Google Scholar]
  6. SobhM.M. AbdalbaryM. ElnagarS. NagyE. ElshabrawyN. AbdelsalamM. AsadipooyaK. El-HusseiniA. Secondary osteoporosis and metabolic bone diseases.J. Clin. Med.2022119238210.3390/jcm11092382 35566509
    [Google Scholar]
  7. LiangB. BurleyG. LinS. ShiY.C. Osteoporosis pathogenesis and treatment: Existing and emerging avenues.Cell. Mol. Biol. Lett.20222717210.1186/s11658‑022‑00371‑3 36058940
    [Google Scholar]
  8. DeviK. ShanmugarajanT.S. Therapeutic potential of plant metabolites in bone apoptosis: A review.Curr. Drug Targets2023241185786910.2174/1389450124666230801094525 37526458
    [Google Scholar]
  9. ChapurlatR. BuiM. Sornay-RenduE. ZebazeR. DelmasP.D. LiewD. LespessaillesE. SeemanE. Deterioration of cortical and trabecular microstructure identifies women with osteopenia or normal bone mineral density at imminent and long-term risk for fragility fracture: A prospective study.J. Bone Miner. Res.202035583384410.1002/jbmr.3924 31821619
    [Google Scholar]
  10. LaneN.E. Glucocorticoid-induced osteoporosis: New insights into the pathophysiology and treatments.Curr. Osteoporos. Rep20191711710.1007/s11914‑019‑00498‑x 30685820
    [Google Scholar]
  11. XiangZ. LiuJ. ShiD. ChenW. LiJ. YanR. BiY. HuW. ZhuZ. YuY. YangZ. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels.Int. J. Biol. Sci.202016132382239110.7150/ijbs.47652 32760206
    [Google Scholar]
  12. HanD. PengC. MengR. YaoJ. ZhouQ. XiaoY. MaH. Estimating the release of inflammatory factors and use of glucocorticoid therapy for COVID-19 patients with comorbidities.Aging (Albany NY)20201222224132242410.18632/aging.202172 33232277
    [Google Scholar]
  13. HuaR. ZhangJ. RiquelmeM.A. JiangJ.X. Connexin Gap junctions and hemichannels link oxidative stress to skeletal physiology and pathology.Curr. Osteoporos. Rep.2021191667410.1007/s11914‑020‑00645‑9 33403446
    [Google Scholar]
  14. SatoA.Y. CregorM. McAndrewsK. LiT. CondonK.W. PlotkinL.I. BellidoT. Glucocorticoid-induced bone fragility is prevented in female mice by blocking Pyk2/Anoikis signaling.Endocrinology201916071659167310.1210/en.2019‑00237 31081900
    [Google Scholar]
  15. SalehS.R. SalehO.M. El-BessoumyA.A. ShetaE. GhareebD.A. EwedaS.M. The therapeutic potential of two Egyptian Plant extracts for mitigating dexamethasone-induced osteoporosis in rats: Nrf2/HO-1 and RANK/RANKL/OPG signals.Antioxidants20241316610.3390/antiox13010066 38247490
    [Google Scholar]
  16. BurchJ.B.E. Regulation of GATA gene expression during vertebrate development.Semin Cell. Dev. Biol.2005161718110.1016/j.semcdb.2004.10.002 15659342
    [Google Scholar]
  17. BarnesP. Role of GATA-3 in allergic diseases.Curr. Mol. Med.20088533033410.2174/156652408785160952 18691059
    [Google Scholar]
  18. HoI.C. TaiT.S. PaiS.Y. GATA3 and the T-cell lineage: Essential functions before and after T-helper-2-cell differentiation.Nat. Rev. Immunol.20099212513510.1038/nri2476 19151747
    [Google Scholar]
  19. KeyhanmaneshR. KhodamoradiF. RahbarghaziR. RahbarghaziA. RezaieJ. AhmadiM. SalimiL. DelkhoshA. Intra-tracheal delivery of mesenchymal stem cell-conditioned medium ameliorates pathological changes by inhibiting apoptosis in asthmatic rats.Mol. Biol. Rep.20224953721372810.1007/s11033‑022‑07212‑8 35118570
    [Google Scholar]
  20. ChenR.M. LinY.L. ChouC.W. GATA-3 transduces survival signals in osteoblasts through upregulation of bcl-x L gene expression.J. Bone Miner. Res.201025102193220410.1002/jbmr.121 20499358
    [Google Scholar]
  21. GuG. HouD. JiaoG. WuW. ZhouH. WangH. ChenY. Ortho-silicic acid plays a protective role in glucocorticoid-induced osteoporosis via the Akt/Bad signal pathway in vitro and in vivo.Biol. Trace Elem. Res.2023201284385510.1007/s12011‑022‑03201‑x 35314965
    [Google Scholar]
  22. XieB. ZengZ. LiaoS. ZhouC. WuL. XuD. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 Cells by JNK and p38-MAPK Pathways.Front. Pharmacol.20211273932610.3389/fphar.2021.739326 34675808
    [Google Scholar]
  23. DengS. DaiG. ChenS. NieZ. ZhouJ. FangH. PengH. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway.Biomed. Pharmacother201911060260810.1016/j.biopha.2018.11.103 30537677
    [Google Scholar]
  24. HoW.P. ChanW.P. HsiehM.S. ChenR.M. Runx2‐mediated bcl‐2 gene expression contributes to nitric oxide protection against hydrogen peroxide‐induced osteoblast apoptosis.J. Cell. Biochem.200910851084109310.1002/jcb.22338 19746447
    [Google Scholar]
  25. ZhaoY. WangH.L. LiT.T. YangF. TzengC.M. Baicalin ameliorates dexamethasone-induced osteoporosis by regulation of the RANK/RANKL/OPG signaling pathway.Drug Des. Devel. Ther.2020141419520610.2147/DDDT.S225516 32021104
    [Google Scholar]
  26. WangL.T. ChenL.R. ChenK.H. Hormone-related and drug-induced osteoporosis: A cellular and molecular overview.Int. J. Mol. Sci.2023246581410.3390/ijms24065814 36982891
    [Google Scholar]
  27. YinM. ZhouD. JiaF. SuX. LiX. SunR. LiJ. Metabolomics analysis of the potential mechanism of Yi-Guan-Jian decoction to reverse bone loss in glucocorticoid-induced osteoporosis.J. Orthop. Surg. Res.202318140910.1186/s13018‑023‑03778‑6 37277810
    [Google Scholar]
  28. LuoY. XiangY. LuB. TanX. LiY. MaoH. HuangQ. Correction: Association between dietary selenium intake and the prevalence of osteoporosis and its role in the treatment of glucocorticoid-induced osteoporosis.J. Orthop. Surg. Res.20241913610.1186/s13018‑023‑04500‑2 38183058
    [Google Scholar]
  29. El-MahrokyS.M. NageebM.M. HemeadD.A. Abd AllahE.G. Agomelatine alleviates steroid‐induced osteoporosis by targeting SIRT1 / RANKL / FOXO1 / OPG signalling in rats.Clin. Exp. Pharmacol. Physiol.2024512e1383210.1111/1440‑1681.13832 37950568
    [Google Scholar]
  30. VidyaG. Osteoporosis.Med. Clin. North Am.2023107221322510.1016/j.mcna.2022.10.013 36759092
    [Google Scholar]
  31. SenguptaB. SahihiM. DehkhodaeiM. KellyD. AranyI. Differential roles of 3-Hydroxyflavone and 7-Hydroxyflavone against nicotine-induced oxidative stress in rat renal proximal tubule cells.PLoS One2017126e017977710.1371/journal.pone.0179777 28640852
    [Google Scholar]
  32. JinZ. YangY.Z. ChenJ.X. TangY.Z. Inhibition of pro-inflammatory mediators in RAW264.7 cells by 7-hydroxyflavone and 7,8-dihydroxyflavone.J. Pharm. Pharmacol.201769786587410.1111/jphp.12714 28295316
    [Google Scholar]
  33. Torres-PiedraM. Ortiz-AndradeR. Villalobos-MolinaR. SinghN. Medina-FrancoJ.L. WebsterS.P. BinnieM. Navarrete-VázquezG. Estrada-SotoS. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: Quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type 1 inhibition.Eur. J. Med. Chem.20104562606261210.1016/j.ejmech.2010.02.049 20346546
    [Google Scholar]
  34. VajraguptaO. BoonchoongP. SumanontY. WatanabeH. WongkrajangY. KammasudN. Manganese-Based complexes of radical scavengers as neuroprotective agents.Bioorg. Med. Chem.200311102329233710.1016/S0968‑0896(03)00070‑1 12713845
    [Google Scholar]
  35. ZhangQ. PengY. LiuJ. YangY. HuZ. ZhouY. MaJ. ZhangD. 7-Hydroxyflavone alleviates myocardial ischemia/reperfusion injury in rats by regulating inflammation.Molecules20222717537110.3390/molecules27175371 36080137
    [Google Scholar]
  36. WangJ. SuH. ZhangT. DuJ. CuiS. YangF. JinQ. Inhibition of Enterovirus 71 replication by 7-hydroxyflavone and diisopropyl-flavon7-yl Phosphate.PLoS One201493e9256510.1371/journal.pone.0092565 24664133
    [Google Scholar]
  37. ShanmugapriyanS. JaikumarS. ViswanathanS. ParimalaK. RajeshM. Effect of Flavone and its Monohydroxy derivatives on animal models of depression in swiss albino mice.Asian J. Pharm. Clin. Res.201912251351710.22159/ajpcr.2019.v12i2.29856
    [Google Scholar]
  38. QiX. ZhangY. LiaoQ. XiaoY. JiangT. LiuS. ZhouL. LiY. 7‐Hydroxyflavone improves nonalcoholic fatty liver disease by acting on STK24.Phytother. Res.20243873444345810.1002/ptr.8207 38685750
    [Google Scholar]
  39. LucindaL.M.F. AarestrupB.J.V. PetersV.M. de Paula ReisJ.E. de OliveiraR.S.M.F. de Oliveira GuerraM. The effect of the Ginkgo biloba extract in the expression of Bax, Bcl-2 and bone mineral content of Wistar rats with glucocorticoid-induced osteoporosis.Phytother. Res.201327451552010.1002/ptr.4747 22648569
    [Google Scholar]
  40. JoshiT. JoshiT. SharmaP. PundirH. ChandraS. In silico identification of natural fungicide from Melia azedarach against isocitrate lyase of Fusarium graminearum.J. Biomol. Struct. Dyn.202139134816483410.1080/07391102.2020.1780941 32568603
    [Google Scholar]
  41. SinghS VermaE MishraAK. In silico molecular docking analysis of cancer biomarkers with GC/MS identified compounds of Scytonema sp.Netw. Model. Anal. Health Inform. Bioinform.2020913010.1007/s13721‑020‑00235‑w
    [Google Scholar]
  42. ParamashivamS.K. ElayaperumalK. NatarajanB. RamamoorthyM. BalasubramanianS. DhiraviamK. In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases.Bioinformation2015112738410.6026/97320630011073 25848167
    [Google Scholar]
  43. AlbaumJ.M. LévesqueL.E. GershonA.S. LiuG. CadaretteS.M. Glucocorticoid-induced osteoporosis management among seniors, by year, sex, and indication, 1996–2012.Osteoporos. Int.201526122845285210.1007/s00198‑015‑3200‑4 26138581
    [Google Scholar]
  44. OakleyR.H. CidlowskiJ.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease.J. Allergy Clin. Immunol.201313251033104410.1016/j.jaci.2013.09.007 24084075
    [Google Scholar]
  45. SivagurunathanS. MuirM.M. BrennanT.C. SealeJ.P. MasonR.S. Influence of glucocorticoids on human osteoclast generation and activity.J. Bone Miner. Res.200520339039810.1359/JBMR.041233 15746983
    [Google Scholar]
  46. MillánJ.L. The role of phosphatases in the initiation of skeletal mineralization.Calcif. Tissue Int.201393429930610.1007/s00223‑012‑9672‑8 23183786
    [Google Scholar]
  47. WangH. YangL. ChaoJ. Antiosteoporosis and bone protective effect of dieckol against glucocorticoid-induced osteoporosis in rats.Front. Endocrinol.20221393248810.3389/fendo.2022.932488 36060953
    [Google Scholar]
  48. AhmedS.A. Abd El ReheemM.H. ElbahyD.A. l-Carnitine ameliorates the osteoporotic changes and protects against simvastatin induced myotoxicity and hepatotoxicity in glucocorticoid-induced osteoporosis in rats.Biomed. Pharmacother.202215211322110.1016/j.biopha.2022.113221 35671582
    [Google Scholar]
  49. ZhangY. LiuM. HeY. DengN. ChenY. HuangJ. XieW. Protective effect of resveratrol on estrogen deficiency-induced osteoporosis though attenuating NADPH oxidase 4/nuclear factor kappa B pathway by increasing miR-92b-3p expression.Int. J. Immunopathol. Pharmacol.202034205873842094176210.1177/2058738420941762 32674689
    [Google Scholar]
  50. ShettyS KapoorN BonduJD. ThomasN. Paul, TV Bone turnover markers: Emerging tool in the management of osteoporosis.Indian J. Endocrinol. Metab.201620684610.4103/2230‑8210.192914 27867890
    [Google Scholar]
  51. RicoH. VillaL.F. Serum tartrate-resistant acid phosphatase (TRAP) as a biochemical marker of bone remodeling.Calcif. Tissue Int.199352214915010.1007/BF00308325 8443692
    [Google Scholar]
  52. HuoJ. DingY. WeiX. ChenQ. ZhaoB. Antiosteoporosis and bone protective effect of nimbolide in steroid‐induced osteoporosis rats.J. Biochem. Mol. Toxicol.20223612e2320910.1002/jbt.23209 36086868
    [Google Scholar]
  53. MoH. ZhangN. LiH. LiF. PuR. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals.Braz. J. Med. Biol. Res.20195212e875410.1590/1414‑431x20198754 31826180
    [Google Scholar]
  54. ElbahnasawyA.S. ValeevaE.R. El-SayedE.M. StepanovaN.V. Protective effect of dietary oils containing omega-3 fatty acids against glucocorticoid-induced osteoporosis.J. Nutr. Health201952432333110.4163/jnh.2019.52.4.323
    [Google Scholar]
  55. GunjegaonkarS.M. ShanmugarajanT.S. Molecular mechanism of plant stress hormone methyl jasmonate for its anti-inflammatory activity.Plant Signal. Behav.20191410e164203810.1080/15592324.2019.1642038 31314659
    [Google Scholar]
  56. GunjegaonkarSM. WankhedeSB. ShanmugarajanTS. ShindeSD. Bioactive role of plant stress hormone methyl jasmonate against lipopolysaccharide induced arthritis.Heliyon2020611e0543210.1016/j.heliyon.2020.e05432 33225090
    [Google Scholar]
  57. WangT. YuX. HeC. Pro-inflammatory cytokines: Cellular and molecular drug targets for glucocorticoid-induced-osteoporosis via osteocyte.Curr. Drug Targets201820111510.2174/1389450119666180405094046 29618305
    [Google Scholar]
  58. YangT. WangQ. QuY. FengC. LiC. YangY. SunZ. AlahmadiT.A. AlharbiS.A. BaoS. Protective effect of rhaponticin on ovariectomy‐induced osteoporosis in rats.J. Biochem. Mol. Toxicol.2021359e2283710.1002/jbt.22837 34227182
    [Google Scholar]
  59. EijkenM. KoedamM. van DrielM. BuurmanC.J. PolsH.A.P. van LeeuwenJ.P.T.M. The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization.Mol. Cell. Endocrinol.20062481-2879310.1016/j.mce.2005.11.034 16406260
    [Google Scholar]
  60. ZhangD. DuJ. YuM. SuoL. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis.Phytomedicine202210415420510.1016/j.phymed.2022.154205 35716470
    [Google Scholar]
  61. YongtaoZ. KunzhengW. JingjingZ. HuS. JianqiangK. RuiyuL. ChunshengW. Glucocorticoids activate the local renin–angiotensin system in bone: Possible mechanism for glucocorticoid-induced osteoporosis.Endocrine201447259860810.1007/s12020‑014‑0196‑z 24519760
    [Google Scholar]
  62. TolbaM.F. El-SerafiA.T. OmarH.A. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals.Toxicol. Appl. Pharmacol.2017324263510.1016/j.taap.2017.03.021 28363435
    [Google Scholar]
  63. SousaL.H. LinharesE.V.M. AlexandreJ.T. LisboaM.R. FurlanetoF. FreitasR. RibeiroI. ValD. MarquesM. ChavesH.V. MartinsC. BritoG.A.C. GoesP. Effects of atorvastatin on periodontitis of rats subjected to glucocorticoid‐induced osteoporosis.J. Periodontol.201687101206121610.1902/jop.2016.160075 27240474
    [Google Scholar]
  64. YangY. YuT. TangH. RenZ. LiQ. JiaJ. ChenH. FuJ. DingS. HaoQ. XuD. SongL. SunB. SunF. PeiJ. Ganoderma lucidum immune modulator protein rLZ-8 could prevent and reverse bone loss in glucocorticoids-induced osteoporosis rat model.Front. Pharmacol.20201173110.3389/fphar.2020.00731 32508652
    [Google Scholar]
  65. KuaiJ. ZhengJ. KumarA. GaoH. Anti‐inflammatory, antiosteoporotic, and bone protective effect of hydroxysafflor yellow A against glucocorticoid‐induced osteoporosis in rats.J. Biochem. Mol. Toxicol.2024389e2379710.1002/jbt.23797 39180369
    [Google Scholar]
  66. IslamM.R. Al-ImranM.I.K. ZehraviM. SweilamS.H. MortuzaM.R. GuptaJ.K. ShanmugarajanT.S. DeviK. TummalaT. AlshehriM.A. RajagopalK. AsiriM. AhmadI. EmranT.B. Targeting signaling pathways in neurodegenerative diseases: Quercetin’s cellular and molecular mechanisms for neuroprotection.Animal Model Exp. Med.20252025ame2.1255110.1002/ame2.1255139843406
    [Google Scholar]
  67. ManolagasS.C. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis.Endocr. Rev.201031326630010.1210/er.2009‑0024 20051526
    [Google Scholar]
  68. VenugopalanS.K. T S, S.; v, N.; S M, M.; S, R. Dexamethasone provoked mitochondrial perturbations in thymus: Possible role of N-acetylglucosamine in restoration of mitochondrial function.Biomed. Pharmacother.2016831485149210.1016/j.biopha.2016.08.068 27619103
    [Google Scholar]
  69. AgidigbiT.S. KimC. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ros-mediated osteoclast diseases.Int. J. Mol. Sci.20192014357610.3390/ijms20143576 31336616
    [Google Scholar]
  70. ZhenY. WangG. ZhuL. TanS. ZhangF. ZhouX. WangX. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts.J. Cell. Physiol.2014229101475148310.1002/jcp.24589 24615518
    [Google Scholar]
  71. ZhangH. ZhouC. ZhangZ. YaoS. BianY. FuF. LuoH. LiY. YanS. GeY. ChenY. ZhanK. YueM. DuW. TianK. JinH. LiX. TongP. RuanH. WuC. Integration of network pharmacology and experimental validation to explore the pharmacological mechanisms of Zhuanggu busui formula against osteoporosis.Front. Endocrinol.20221284166810.3389/fendo.2021.841668 35154014
    [Google Scholar]
  72. PagliariL.J. KuwanaT. BonzonC. NewmeyerD.D. TuS. BeereH.M. GreenD.R. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat.Proc. Natl. Acad. Sci. USA200510250179751798010.1073/pnas.0506712102 16330765
    [Google Scholar]
  73. WangX. WeiL. LiQ. LaiY. HIF-1α protects osteoblasts from ROS-induced apoptosis.Free Radic. Res.202256214315310.1080/10715762.2022.2037581 35380485
    [Google Scholar]
  74. LiuW. ZhaoZ. NaY. MengC. WangJ. BaiR. Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells.Int. J. Mol. Med.20184142028203610.3892/ijmm.2018.3412 29393368
    [Google Scholar]
  75. WarrenC.F.A. Wong-BrownM.W. BowdenN.A. BCL-2 family isoforms in apoptosis and cancer.Cell Death Dis.201910317710.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  76. ArunsundarM. ShanmugarajanT.S. RavichandranV. 3,4-dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer’s disease mouse model: Modulation of the molecular signals in neuronal survival-apoptotic programs.Neurotox. Res.201527214315510.1007/s12640‑014‑9492‑x 25274193
    [Google Scholar]
  77. LoiF. CórdovaL.A. PajarinenJ. LinT. YaoZ. GoodmanS.B. Inflammation, fracture and bone repair.Bone20168611913010.1016/j.bone.2016.02.020 26946132
    [Google Scholar]
  78. HuK. OlsenB.R. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair.J. Clin. Invest.2016126250952610.1172/JCI82585 26731472
    [Google Scholar]
  79. ChenT.L. WuG.J. HsuC.S. FongT.H. ChenR.M. Nitrosative stress induces osteoblast apoptosis through downregulating MAPK-mediated NFκB/AP-1 activation and subsequent Bcl-XL expression.Chem. Biol. Interact.2010184335936510.1016/j.cbi.2010.01.040 20132804
    [Google Scholar]
  80. LiS. JiangH. GuX. Echinacoside suppresses dexamethasone induced growth inhibition and apoptosis in osteoblastic MC3T3 E1 cells.Exp. Ther. Med.201816264364810.3892/etm.2018.6199 30112029
    [Google Scholar]
  81. HawseJ.R. SubramaniamM. IngleJ.N. OurslerM.J. RajamannanN.M. SpelsbergT.C. Estrogen‐TGFβ cross‐talk in bone and other cell types: Role of TIEG, Runx2, and other transcription factors.J. Cell. Biochem.2008103238339210.1002/jcb.21425 17541956
    [Google Scholar]
  82. XueF. ZhaoZ. GuY. HanJ. YeK. ZhangY. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis.eLife202110e6487210.7554/eLife.64872 34227467
    [Google Scholar]
  83. LiQ. YangG. XuH. TangS. LeeW.Y. Effects of resveratrol supplementation on bone quality: A systematic review and meta-analysis of randomized controlled trials.BMC Complement. Med. Ther.202121121410.1186/s12906‑021‑03381‑4 34420523
    [Google Scholar]
  84. WongR.H.X. Thaung ZawJ.J. XianC.J. HoweP.R.C. Regular supplementation with resveratrol improves bone mineral density in postmenopausal women: A randomized, placebo-controlled trial.J. Bone Miner. Res.202035112121213110.1002/jbmr.4115 32564438
    [Google Scholar]
  85. SalehiB. FokouP.V.T. Sharifi-RadM. ZuccaP. PezzaniR. MartinsN. Sharifi-RadJ. The therapeutic potential of naringenin: A review of clinical trials.Pharmaceuticals20191211110.3390/ph12010011 30634637
    [Google Scholar]
  86. StabrauskieneJ. KopustinskieneD.M. LazauskasR. BernatonieneJ. Naringin and Naringenin: Their mechanisms of action and the potential anticancer activities.Biomedicines2022107168610.3390/biomedicines10071686 35884991
    [Google Scholar]
  87. AltaweelA.A. BaiomyA.A.B.A. ShoshanH.S. AbbasH. Abdel-HafizA.A.S. GaberA.E.H. ZewailA.A. ElshiekhM.A.M. Evaluation of osteogenic potential of Cissus quadrangularis on mandibular alveolar ridge distraction.BMC Oral Health.202121149110.1186/s12903‑021‑01847‑y 34607598
    [Google Scholar]
  88. WangZ. WangD. YangD. ZhenW. ZhangJ. PengS. The effect of icariin on bone metabolism and its potential clinical application.Osteoporos. Int.201829353554410.1007/s00198‑017‑4255‑1 29110063
    [Google Scholar]
  89. FarrJ.N. AtkinsonE.J. AchenbachS.J. VolkmanT.L. TweedA.J. VosS.J. RuanM. SfeirJ. DrakeM.T. SaulD. DoolittleM.L. BancosI. YuK. TchkoniaT. LeBrasseurN.K. KirklandJ.L. MonroeD.G. KhoslaS. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: A phase 2 randomized controlled trial.Nat. Med.20243092605261210.1038/s41591‑024‑03096‑2 38956196
    [Google Scholar]
  90. LinJ. ZhuJ. WangY. ZhangN. GoberH.J. QiuX. LiD. WangL. Chinese single herbs and active ingredients for postmenopausal osteoporosis: From preclinical evidence to action mechanism.Biosci. Trends201711549650610.5582/bst.2017.01216 29151553
    [Google Scholar]
  91. SquadritoF. ImbalzanoE. RotturaM. ArcoraciV. PallioG. CatalanoA. AtteritanoM. IrreraN. ManninoF. SquadritoG. VaccaroM. IrreraP. PirrottaI. BittoA. Effects of genistein aglycone in glucocorticoid induced osteoporosis: A randomized clinical trial in comparison with alendronate.Biomed. Pharmacother.202316311482110.1016/j.biopha.2023.114821 37167726
    [Google Scholar]
  92. Farshbaf-KhaliliA. FarajniaS. PourzeinaliS. ShakouriS.K. Salehi-PourmehrH. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA ‐21, miRNA ‐422a, and miRNA ‐503 gene in postmenopausal women with low bone mass density: A randomized, triple‐blind, placebo‐controlled clinical trial with factorial design.Phytother. Res.202135116216622710.1002/ptr.7259 34496087
    [Google Scholar]
  93. HolickM.F. LambJ.J. LermanR.H. KondaV.R. DarlandG. MinichD.M. DesaiA. ChenT.C. AustinM. KornbergJ. ChangJ.L. HsiA. BlandJ.S. TrippM.L. Hop rho iso-alpha acids, berberine, vitamin D3 and vitamin K1 favorably impact biomarkers of bone turnover in postmenopausal women in a 14-week trial.J. Bone Miner. Metab.201028334235010.1007/s00774‑009‑0141‑z 20024591
    [Google Scholar]
  94. ZiqiZ. GanghuiJ. Thirty cases of the blood-stasis type prolapse of lumbar intervertebral disc treated by acupuncture at the xi (cleft) point plus herbal intervention injection.J. Tradit. Chin. Med.200828317818210.1016/S0254‑6272(08)60041‑2 19004198
    [Google Scholar]
  95. JungS.J. OhM.R. LeeD.Y. LeeY.S. KimG.S. ParkS.H. HanS.K. KimY.O. YoonS.J. ChaeS.W. Effect of ginseng extracts on the improvement of osteopathic and arthritis symptoms in women with osteopenia: a randomized, double-blind, placebo-controlled clinical trial.Nutrients20211310335210.3390/nu13103352 34684351
    [Google Scholar]
  96. WangQ. JinQ. CaiL. ZhaoC. FengP. JiaJ. XuW. QianQ. DingZ. XuJ. GuC. ZhangS. ShiH. MaH. DengY. ZhangT. SongY. WangQ. ZhangY. ZhouX. PeiL. YangY. LiangJ. JiangT. LiH. LiuH. WuL. KangP. Efficacy of diosmin in reducing lower-extremity swelling and pain after total knee arthroplasty: A randomized, controlled multicenter trial.J. Bone Joint. Surg. Am.202420, 106649250010.2106/JBJS.23.0085438109425
    [Google Scholar]
  97. MartinB.R. McCabeG.P. McCabeL. JacksonG.S. HorcajadaM.N. Offord-CavinE. PeacockM. WeaverC.M. Effect of hesperidin with and without a calcium (Calcilock) supplement on bone health in postmenopausal women.J. Clin. Endocrinol. Metab.2016101392392710.1210/jc.2015‑3767 26751193
    [Google Scholar]
  98. YongE.L. CheongW.F. HuangZ. ThuW.P.P. Cazenave-GassiotA. SengK.Y. LoganS. Randomized, double-blind, placebo-controlled trial to examine the safety, pharmacokinetics and effects of Epimedium prenylflavonoids, on bone specific alkaline phosphatase and the osteoclast adaptor protein TRAF6 in post-menopausal women.Phytomedicine20219115368010.1016/j.phymed.2021.153680 34352588
    [Google Scholar]
  99. AbdelazeemN.M. AboulthanaW.M. HassanA.S. AlmehiziaA.A. NaglahA.M. AlkahtaniH.M. Synthesis, in silico ADMET prediction analysis, and pharmacological evaluation of sulfonamide derivatives tethered with pyrazole or pyridine as anti-diabetic and anti-Alzheimer’s agents.Saudi Pharm. J.202432510202510.1016/j.jsps.2024.102025 38550332
    [Google Scholar]
  100. QaisF.A. AlomarS.Y. ImranM.A. HashmiM.A. In-silico analysis of phytocompounds of Olea europaea as potential anti-cancer agents to target PKM2 Protein.Molecules20222718579310.3390/molecules27185793 36144527
    [Google Scholar]
  101. RajuL. LipinR. EswaranR. Identification, ADMET evaluation and molecular docking analysis of Phytosterols from Banaba (Lagerstroemia speciosa (L.)Pers) seed extract against breast cancer.In silico Pharmacol.2021914310.1007/s40203‑021‑00104‑y 34367875
    [Google Scholar]
  102. LuZ. HuangM. LinH. WangG. LiH. Network pharmacology and molecular docking approach to elucidate the mechanisms of Liuwei Dihuang pill in diabetic osteoporosis.J. Orthop. Surg. Res.202217131410.1186/s13018‑022‑03194‑2 35701780
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266387622250519052501
Loading
/content/journals/ctmc/10.2174/0115680266387622250519052501
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 7-Hydroxyflavone; ADMET analysis; Caspase-3; dexamethasone; GATA-3; NF-kB; osteoporosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test